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Abstract

Coronavirus disease 2019 (COVID-19) has become a global pandemic and continues

to prevail with multiple rebound waves in many countries. The driving factors for the

spreadofCOVID-19 and their quantitative contributions, especially to reboundwaves,

are not well studied. Multidimensional time-series data, including policy, travel, med-

ical, socioeconomic, environmental, mutant and vaccine-related data, were collected

from 39 countries up to 30 June 2021, and an interpretable machine learning frame-

work (XGBoost model with Shapley Additive explanation interpretation) was used

to systematically analyze the effect of multiple factors on the spread of COVID-19,

using the daily effective reproduction number as an indicator. Based on a model of the

pre-vaccine era, policy-related factorswere shown to be themain drivers of the spread

of COVID-19, with a contribution of 60.81%. In the post-vaccine era, the contribution

of policy-related factors decreased to 28.34%, accompanied by an increase in the con-

tribution of travel-related factors, such as domestic flights, and contributions emerged

for mutant-related (16.49%) and vaccine-related (7.06%) factors. For single-peak

countries, the dominant ones were policy-related factors during both the rising and

fading stages, with overall contributions of 33.7% and 37.7%, respectively. For double-

peak countries, factors from the rebound stage contributed 45.8% and policy-related

factors showed the greatest contribution in both the rebound (32.6%) and fading

(25.0%) stages. For multiple-peak countries, the Delta variant, domestic flights (cur-

rent month) and the daily vaccination population are the three greatest contributors
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(8.12%, 7.59% and 7.26%, respectively). Forecasting models to predict the rebound

risk were built based on these findings, with accuracies of 0.78 and 0.81 for the pre-

and post-vaccine eras, respectively. These findings quantitatively demonstrate the sys-

tematic drivers of the spread of COVID-19, and the framework proposed in this study

will facilitate the targeted prevention and control of the ongoing COVID-19 pandemic.
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1 INTRODUCTION

An emerging infectious disease, coronavirus disease 2019 (COVID-

19), caused by severe acute respiratory syndrome coronavirus 2, has

rapidly spread globally. On March 11, 2020, the World Health Orga-

nization declared COVID-19 as a global pandemic. Until 11 February

2022, there were 405,688,274 COVID-19 cases globally (Looi, 2020;

Roser et al., 2020). The number of new cases continues to increase

every day, and COVID-19 remains a global concern after 2 years of

circulation.

Since July 2020, there has been a secondwave of infections inmany

countries (Cacciapaglia et al., 2020; Wise, 2020; Xu & Li, 2020; Zhu

et al., 2020), especially in Europe and Asia. Vaccine development was

also ongoing inmany countries during that period. In early 2021, coun-

tries around the world began to implement extensive vaccination pro-

grams with the aim of ending the COVID-19 pandemic (Awadasseid

et al., 2021). However, new virus variants with greater transmissibil-

ity have emerged, combined with control measures, and caused mul-

tiple waves of record-breaking numbers of new infections (Mohapa-

tra et al., 2022; Sonabend et al., 2021). The ongoing pandemic has

become a long-term battle, not just for public health, as governments

are required to balance economic recovery, political votes and control

of the COVID-19 pandemic (Di Domenico et al., 2020; Ferrante et al.,

2020; Leung et al., 2020). As a result, decision-makers have adjusted

intervention policies dynamically, while considering many types of

factors, including the status of the COVID-19 pandemic (Panovska-

Griffiths et al., 2020; Qiu et al., 2020; Sebhatu et al., 2020), the charac-

teristics of new virus variants, vaccination status, socioeconomic con-

ditions (Kandel et al., 2020) and medical resources (Brauner et al.,

2020), to contain the pandemic.

The combined effects of various control measures are complicated,

and the effect could be context dependent for a specific country. Those

understandings are important for precise control and more quanti-

tative studies are needed. Various non-pharmaceutical interventions

(Flaxman et al., 2020; Haug et al., 2020; Hsiang et al., 2020; Russell

et al., 2021; Sunet al., 2020) implementedbymany countries havebeen

shown to be useful to contain and control the spread of the pandemic.

Without restrictions, populationmigration,whichmay increase the risk

of contactwith infected people, may lead to the rapid spread of the dis-

ease (Cao et al., 2020; Kubota et al., 2020; vanOosterhout et al., 2021).

This has been extensively studied based on data from many countries

(Duhon et al., 2020). Soft power at the national level, including social

and economic support and the reasonable optimization and mobiliza-

tion of medical resources, has the potential to slow down and affect

the spread of COVID-19 (Haider et al., 2020; Li et al., 2020). In addi-

tion, many studies have found that climate and other environmental

factors may also play roles in the spread of COVID-19 (Price et al.,

2019;Qu et al., 2020).Overall, the spread and control of COVID-19 is a

complex process involving various complex heterogeneous factors that

are intertwined (Han et al., 2022). This nonlinear systembecomes even

more complex with the emergence of new virus variants, the uncertain

effect of vaccination on the human population (Sowa et al., 2021) and

the heterogeneity of regional developmental levels. A well-developed

interpretable machine learning framework (Ayoub et al., 2021; Murri

et al., 2021) may adapt to this complex scenario and provide reason-

able interpretation and predictive capabilities, which are critical for a

greater understanding of themechanisms underlying the effectiveness

of various COVID-19 control measures. Ultimately, this will facilitate

the development and implementation of targeted and precise preven-

tion and control strategies for the ongoing COVID-19 pandemic.

In this study, factors and datasets related to the spread and con-

trol of COVID-19 were collected as much as possible from all over

the world and used for further analysis. The effects of various factors

on the spread of COVID-19 were studied based on a nonlinear inter-

pretablemachine learning framework. Contributing factors were iden-

tified and characterized for different phases of the pandemic, before

and after vaccine implementation, and for countries with or without

rebound waves. The driving factors and potential mechanisms were

explored, and forecasting efforts weremade.

2 MATERIALS AND METHODS

2.1 Study design

This study was designed as a quantitative study of the contribution

of multi-dimensional factors to the spread of COVID-19, using the

effective reproductive number as an indicator, and to the occurrence

of multiple waves of infections. Specifically, this study focused on the

following aspects: (1) the quantification of the overall contribution of

multi-dimensional factors, before and after vaccine implementation;

(2) a comparative analysis of the factors influencing the rising and
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fading stages of the pandemic, in countries with or without rebound

waves, and before and after vaccine implementation; and (3) rebound

risk forecasting for the spread of COVID-19.

2.2 Data

Daily numbers of COVID-19 cases were collected from 39 countries

up to 30 June 2021. These 39 countries were selected based on the

following principles: (1) they represented countries from five conti-

nents, (2) the total number of cases in these countries was among the

highest during the study period and (3) data for multi-dimensional fac-

tors during the same period were available. The COVID-19 pandemic

was divided into two phases—the pre-vaccine era and the post-vaccine

era—using the date when vaccination began in each country as the

dividing date.Of the39 countries selected, seven single-peak countries

without a rebound wave and 13 double-peak countries with a rebound

wavewere identified in the pre-vaccine era (Figure S1), while 36multi-

peak countries with multiple rebound waves (excluding China, Aus-

tralia and New Zealand, which had no rebound wave) were identified

in the post-vaccine era. A rebound wave was identified when the num-

ber of new COVID-19 cases exceeded the average value of the peak in

the pre-vaccine era for three consecutive weeks.

The factors analyzedwere divided into the following groups: policy-

related factors (including 13 specific non-pharmaceutical interven-

tions in the previousweek and at the current time point), travel-related

factors (including domestic and foreign air passenger flow in the pre-

vious month and the current month), socioeconomic factors (popula-

tion, population density, per capita income, aging ratio and sex ratio),

environmental factors (maximum temperature,minimum temperature,

average temperature, relative humidity and absolute humidity) and

medical factors (number of doctors per 1000 residents, number of

nurses, number of pharmacists, number of beds, medical expenditure

quota, cardiovascular death rate and diabetes prevalence). Addition-

ally, the number of daily vaccinations was considered as a vaccine-

related factor, and information regarding existing virus variants was

included in the mutant-related factor category. All of these data were

analyzed at the national level.

Effective reproductive number: The daily effective reproductive num-

ber (Rt) was used as an indicator of the spread of COVID-19. Rt indi-

cates the average number of secondary cases caused by one infected

person per day (Fernández-Naranjo et al., 2021), and it was calculated

based on the Susceptible-Infected-Recovered model (Arroyo-Marioli

et al., 2021; Kermack & Mckendrick, 1927). When Rt ≤ 1, maintain-

ing the current prevention and control measures is expected to grad-

ually control an infectious disease epidemic. In contrast, when Rt >1,

the infectious disease will continue to spread, suggesting that the pre-

vention and control measures need to be optimized and strengthened.

The Rt values for COVID-19 in the 39 countries included in the analy-

siswereobtained fromOurWorld inData (https://ourworldindata.org/

covid-cases).

Policy-related factors: These data were obtained from the

Oxford COVID-19 Government Response Tracker (OxCGRT,

https://github.com/OxCGRT/covid-policy-tracker), which includes

data on the level of specific measures (strictness of implementation)

taken by governments during the outbreak. Thirteen specificmeasures

were analyzed, as detailed in Table S1. These classification variables

were converted into a score in the range of [0,100]. The details of this

calculation are presented in the Materials and Methods section of the

Appendix.

Travel-related factors: Data on air passenger flow, based on monthly

statistical measures at the national level, were collected from the Offi-

cial Aviation Guide. These data included global passenger flow to the

countries (foreign flights) and intra-country air passenger flow (domestic

flights). A 1-month lag timewas also included (Cao et al., 2020) for these

data.

Socioeconomic factors: The number of residents (population), popula-

tion density (density), per capita national income (GDP), percentage of

the population aged ≥65 years (old%) and sex ratio (the ratio of men

to woman, sex ratio) were collected from Our World in Data (https:

//ourworldindata.org/covid-cases).

Medical factors: Health resource datawere obtained from theWorld

Bank (https://data.worldbank). These data included the number of doc-

tors (doctor), nurses (nurse), pharmacists (pharmacist) and beds (beds)

and the health expenditure per 1000 people (health expenditure). Addi-

tional health data, such as the cardiovascular death rate (cardiovascular

death rate) anddiabetes prevalence (diabetes prevalence),wereobtained

fromOurWorld in Data (https://ourworldindata.org).

Environmental factors: The daily maximum temperature, minimum

temperature, average temperature, relative humidity and absolute

humidity during the study period were collected from the National

Oceanic and Atmospheric Administration (https://www.noaa.gov/).

Mutant-related factors: The fivemajor virus strains (alpha, beta, delta,

gamma and lambda) were considered, and the temporal proportions

referred to Alpha for Beta, Delta, Gamma and Lambda in each region

were included as free variables in the analysis. These proportionswere

based on the weekly time scale in 39 countries obtained from the

Global Initiative on Sharing Avian Influenza Data (https://www.gisaid.

org/hcov19-variants/).

Vaccine factor: The number of daily COVID-19 vaccinations (daily

vaccination population) in the 39 countries was obtained from Our

World in Data (https://ourworldindata.org/covid-cases).

All time scales were unified as daily scales using the pandas time-

series resamplingmethod (https://pandas.pydata.org/).Moreover, con-

sidering the latent period of COVID-19, lag effects for policy- and

travel-related factors were also considered and incorporated into the

model (see the Materials and Methods section in the Appendix for

more details).

2.3 Machine learning framework

Interpretable machine learning frameworks were used to determine

the nonlinear contribution of systematic factors to the Rt value. Specif-

ically, multiple candidates nonlinear regression models, including ran-

dom forest, support vector machine and extreme gradient boosting
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(XGBoost) (Chen & Guestrin, 2016) models, were used, and important

factorswere selected using the sequential floating selection (SFS) algo-

rithm (Fjf et al., 1994; Pudil et al., 1994). The overall framework is

shown in Figure S2. SFS is a sequential feature selectionmethod based

on the greedy search that can remove functions from all feature sets

and evaluate error functions. If the error reaches the optimal level, the

combination of the remaining features is regarded as the best feature

combination. ABayesian search algorithmwas used to identify the root

mean square error (RMSE) of the parameter sets by fitting the model.

The effect of generalization was evaluated by 10-fold cross-validation

(S. M. Lundberg et al., 2020). Two temporally non-overlapping datasets

were built based on the pre-vaccine era (a training set up to 31 Octo-

ber 2020, and a testing set from 1 November to 30 November 2020)

andpost-vaccine era (a training set fromJanuary2021 to31May2021,

anda testing set from1June to30 June2021) datasets. Themodelwith

the lowest fittingerrorwas selectedbasedon two training sets, and this

model was used in subsequent analyses.

2.4 Ranking contribution of the factors

Shapley additive explanation (SHAP) is an interpretable analysis

method (S. M. Lundberg et al., 2020) for the outputs of machine learn-

ing models. It treats all features as “contributors” and generates a pre-

dictive value (SHAPvalue). For eachpredicted sample, thevalueof each

influencing factor, known as the feature value, for the sample was uni-

formly assigned. The SHAP value (S. Lundberg & Lee, 2017) was calcu-

lated as follows:

yi = ybase + f(xi1) + f(xi2) + ⋅ ⋅ ⋅ + f(xiN),

where the ith sample of the Nth feature is defined as xiN, the refer-

ence value of the model (the mean value of the sample target variable)

is ybase and f(xiN) is the SHAP value of xiN. A positive value indicates

that the feature has a positive contribution. The predicted value of the

effective reproductive number yi here is the linear combination of ybase
and f(xiN). The SHAP value was obtained based on the best model and

|f(xij)|was used to measure the contribution of factors selected by the

SFS algorithm, which was further converted into a percentage contri-

bution value (Pan et al., 2020).

2.5 Model evaluation and short-term pandemic
rebound risk prediction

A rebound risk model was built by considering the daily increas-

ing (Rt > 1) or decreasing (Rt ≤ 1) trend as the subject (binary)

and all factors selected as covariables. The RMSE and R2 values

were used to evaluate the model fit to Rt using 10-fold cross-

validation for the training set. The accuracy, precision, recall, F1

score and area under the curve were used to evaluate the rebound

risk.

3 RESULTS

3.1 Contribution of systematic factors to the
spread of COVID-19 in pre- and post-vaccine eras

On the basis of designed framework (Figure S2), the XGBoost model

was selected (Table S2) and 1-week lag was used (Table S3) for subse-

quent analyses, as it showed the best fit with the training set (Table S2).

Therefore, XGBoost with SHAP analysis (see Materials and Meth-

ods section for further details) was chosen to identify important fac-

tors contributing to the spread of COVID-19 (Rt) in 39 countries,

before and after vaccine implementation, and only top 20 factors were

shown and discussed. Overall, the RMSE and R2 values, as evalua-

tion measures of the model, were 0.109 and 0.725, respectively, in

the pre-vaccine era, and 0.021 and 0.988, respectively, in the post-

vaccine era. In the pre-vaccine era, policy-related (60.81%) and travel-

related factors (18.84%) were the primary contributors to the spread

of COVID-19. Socioeconomic andmedical factors accounted for 9.31%

and 6.58% of the spread of COVID-19, but environmental factors only

accounted for 4.48% (Figure 1a and Figure S3a). In the post-vaccine

era, the contribution pattern changed significantly, with policy-related

factors reduced to 28.34% and travel-related, environmental, medical

and socioeconomic factors reaching 21.67%, 9.62%, 8.64% and 8.20%,

respectively. The contributions of mutant-related and vaccine factors

reached 16.49% and 7.06%, respectively (Figure 1b and Figure S3b).

Of the travel-related factors assessed in the pre-vaccine era, only

population movement caused by foreign flights was identified as

an important factor, contributing 18.84% (Figure 1a). Of the policy-

related factors, the three greatest contributors were income sup-

port (previous week), stay-at-home requirements (previous week) and

workplace closure (previous and current week), with contributions of

10.23%, 8.29%, 7.70% and 6.59%, respectively. Of the socioeconomic

factors, GDP was the dominant contributor, with 5.80%. The contri-

bution of single medical and environmental factors was low, with the

highest percentages of 3.95% for the number of nurses and 2.69%

for relative humidity, respectively. Although foreign flights (previous

month) remained as the dominant factor with the highest contribution

in the post-vaccine era (7.75%), the contributions fromdomestic flights

in the current and previous months were 7.56% and 6.36%, respec-

tively. Mutant-related factors contributed significantly to the dynam-

ics of COVID-19 in the post-vaccine era, with 7.56%, 4.69% and 4.24%

contributions for delta, gamma and beta variants. The vaccine factor

also made a significant contribution to the spread of COVID-19 in the

post-vaccine era, with a contribution of 7.06%. As a result, the contri-

butions from policy-related factors were significantly reduced in the

post-vaccine era, with the top three factors—workplace closure in the

previous week and the cancellation of public events in the current and

previous weeks—contributing 5.63%, 5.63% and 4.66%, respectively.

At the country level, the overall pattern in the pre-vaccine era was

the same as the pattern observed at the global level, with policy- and

travel-related factors making the greatest contributions (Table S4).

Nevertheless, heterogeneity existed among countries, with the
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F IGURE 1 Contribution of different factors to the Rt value of COVID-19 in 39 countries before (a) and after (b) vaccine implementation

contribution of policy-related factors in several countries, such as

Sweden, Mexico and Bulgaria, being as high as 70%. However, the

contribution of travel-related factors in many countries, such as

Spain, the United States and Cameroon, was 30%. Moreover, the

contributions of socioeconomic, environmental and medical factors

were low in all countries evaluated. Of note, there were noticeable

differences in the contributions of these factors in different countries.

For example, the contribution of socioeconomic factors in Colombia,

Kenya and Chile was 16.17%, 14.89% and 14.64%, respectively; the

contribution of environmental factors in Argentina, Ecuador and

Colombia was 15.67%, 13.60% and 13.21%, respectively; and the

contribution of medical factors in Algeria and Canada was 11.27%

and 9.89%, respectively. In the post-vaccine era, a significant decrease

in the dominance of policy-related factors was seen (Table S4), and

the contribution of vaccine factor was relatively high in some coun-

tries, such as Bangladesh, Canada and South Africa, which showed

contributions of 15.03%, 12.54% and 10.66%, respectively. At the

same time, the contribution of variant viral strains in these coun-

tries was also prominent, reaching 32.67%, 25.92% and 28.16%,

respectively.

3.2 Factors related to the rebound of COVID-19

As COVID-19 continued to spread, different countries responded dif-

ferently, leading to different outcomes, with rebound waves occurring

in many countries. In the pre-vaccine era, 13 of the 39 countries ana-

lyzed had a clear rebound wave with double peaks in the number of

new cases, whereas seven countries had no rebound wave, but a clear

single peak (Figure S1). In addition, the first peak was further divided

into the rising and fading stages, and the second peak was classified

as the rebound stage. In the post-vaccine era, 36 of the 39 countries

analyzed experienced multiple rebound waves, with more than one

peak.Models were then built for the seven double-peak countries with

rebound waves, 13 single-peak countries without a rebound wave in

the pre-vaccine era and 36 countries with multiple rebounds in the

post-vaccine era (Table S5). These models had RMSE values of 0.634,

0.298 and 0.021 and R2 values of 0.824, 0.712 and 0.988, respectively

(Figure 2).

Overall, factors in the rising and fading stages had similar effects on

the spread of COVID-19 in single-peak countries (Figure 2a). Policy-

and travel-related factors were dominant during the rising stage (con-

tributions of 33.7% and 18.7% in the rising and fading stages, respec-

tively), but policy-related factorswere predominant in the fading stage,

reaching a contribution of 37.7% (Figure 2a). However, approximately

half (45.8%) of the contribution to the spread of COVID-19 in double-

peak countries was from factors in the rebound stage. Policy-related

factors showed contributions of 32.6% and 25.0% during the rebound

and fading stages, respectively (Figure 2b). In the post-vaccine era,

the results of the model including countries with multiple rebounds

were similar to the results of the model that included all 39 countries

(Figure 1b), with policy- and travel-related factors accounting formore

than half of the contribution, although the contribution from policy-

related factors significantly decreased (Figure 2c). Mutant-related and

vaccine factors contributed17.7%and7.3%, respectively, to the spread

of COVID-19 in the post-vaccine era. The contributions from environ-

mental and medical factors increased to 9.6% and 8.7% in the post-

vaccine era.

In single-peak countries (Figure 2d), the contribution of domestic

flights (previous month) in the rising stage was 18.71%, with effective

SHAP values of 0.23, indicating a positive contribution to the spread

of COVID-19. Other important factors in single-peak countries were

policy-related factors, such as contact tracing (contribution, 9.90%;

effective SHAP value, −1.14) and the cancellation of public events
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(e)

(b)

(d)

(a)

(f)

(c)

F IGURE 2 Contribution of the 20most important factors and their effective SHAP values (sum of SHAP values) for Rt at different stages of the
pandemic in single-peak (a, d), double-peak (b, e) andmultiple-peak (c, f) countries. The first peak includes the rising and fading stages, and the
additional peaks were defined as the rebound stage. The colour for each group is the same as in Figure 1

(contribution, 7.11%; effective SHAP value, −0.64) in the rising stage

and school closure in the previous week (contribution, 8.03%; effec-

tive SHAP value, −0.79) and international travel controls (contribu-

tion, 7.34%; effective SHAP value, −0.32) in the fading stage. All of

these factors decreased the spread of COVID-19 (Figure 2d). However,

a more diverse range of factors from different categories was involved

in double-peak countries, many of which were present in the rebound

stage (12/20, Figure 2e). In particular, foreign flights in the rising stage

(contribution, 9.09%) and domestic flights in the fading stage (contri-

bution, 7.66%) increased the spread of COVID-19,with effective SHAP

values of 1.43 and 1.15, respectively. The cancellation of public events

in the fading stage (contribution, 8.58%) and testing policies (previous

week) in the rebound stage (contribution, 7.73%) reduced the spread

of COVID-19, with effective SHAP values of −2.69 and −0.04, respec-

tively. The contribution of foreign flights continued to decrease in the

post-vaccine era (contribution, 6.39%; effective SHAP value, −1.56;

negative effect). The Delta variant became the most influential con-

tributor to the spread of COVID-19 in the post-vaccine era (contribu-

tion, 8.12%; SHAP value, 9.18). Other virus variants, such as gamma

and beta, also had a promoting effect on the spread of COVID-19 in

the post-vaccine era, with SHAP values of 1.37 and 5.37, respectively.

The strong inhibitory effect of the vaccine was evident (contribution,

7.26%; SHAPvalue,−9.28). Unexpectedly,most policies had a boosting

effect on the spread of COVID-19, with SHAP values> 0, for five of the

six factors evaluated (Figure 2f).

3.3 Rebound risk forecasting

After understanding the different contributions from various factors,

we sought to determine whether the rebound risk of COVID-19 could

be predicted. Predictive models were built based on data from 20

selected countries in the pre-vaccine era and 36 countries in the post-

vaccine era. A high risk of reboundwas defined as Rt > 1, and a low risk

of reboundwasdefined asRt ≤1.Daily forecastingwas thenperformed

for the following 30 days, based on actual data for all of the contribut-

ing factors in the model. COVID-19 rebound was defined as Rt > 1 for

more than half of the 30 days. The accuracy of the risk forecast was

0.78 and 0.81 in the pre-vaccine and post-vaccine eras, respectively

(Table 1 and Table S6).

4 DISCUSSION

On the basis of available datasets, the contribution of systematical

factors to the spread of COVID-19 was studied through an inter-

pretable machine learning framework. Globally, policy-related and

travel-related factors (Bielecki et al., 2021; Chinazzi et al., 2020; Jia

et al., 2020) play essential roles in the spread of the COVID-19 epi-

demic during the stage when the vaccine was not yet widely avail-

able (Figure 1a). Compared with double-peak countries, the spread

of COVID-19 in single-peak countries was mostly driven by domes-

tic migration and policy-related factors (Figure 2d). Neglecting travel

restrictions (both foreign and domestic flights) in the earlier stage and

relaxing intervention policies in the later stagesmay increase the likeli-

hood of pandemic resurgence (Figure 2e). This remained true for the

post-vaccine era, during which unfavourable policy implementation

and new virus variants with increased infectivity caused multi-peak

rebounds, even after vaccine implementation (Figure 2f). A forecasting

model basedon this knowledgegave reasonablepredictions for the risk

of rebound. Our study sheds light on quantitatively understanding the

mechanisms underlying the global spread of COVID-19 and will facil-

itate the precise and cost-effective control of the ongoing COVID-19

pandemic (Reddy et al., 2021).
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TABLE 1 Rebound risk forecasting for 39 countries

Pre-vaccine era Post-vaccine era

Country Rebound (%)

Rebound

prediction (%)

Correct

prediction Rebound (%)

Rebound

prediction (%)

Correct

prediction

Afghanistan 100 (30/30) 100 (30/30) √ 93.33 (28/30) 100 (30/30) √

Algeria – – – 100 (30/30) 100 (30/30) √

Argentina – – – 0 (0/30) 53.33 (16/30) X

Austria – – – 0 (0/30) 0 (0/30) √

Australia 36.67 (11/30) 3.33 (1/30) √ – – –

Bangladesh – – – 100 (30/30) 86.67 (26/30) √

Bolivia – – – 40 (12/30) 100 (30/30) X

Bulgaria – – – 0 (0/30) 0 (0/30) √

Cameroon – – – 0 (0/30) 0 (0/30) √

Canada 100 (30/30) 100 (30/30) √ 0 (0/30) 0 (0/30) √

Chile 26.67 (8/30) 3.33 (1/30) √ 26.67 (8/30) 63.33 (19/30) X

China 73.33 (22/30) 86.67 (26/30) √ – – –

Colombia – – – 93.33 (28/30) 86.67 (26/30) √

Denmark 100 (30/30) 100 (30/30) √ 6.67 (2/30) 0 (0/30) √

Ecuador – – – 0 (0/30) 0 (0/30) √

Finland 100 (30/30) 100 (30/30) √ 43.33 (13/30) 0 (0/30) √

France 26.67 (8/30) 100 (30/30) X 0 (0/30) 0 (0/30) √

Germany 100 (30/30) 100 (30/30) √ 0 (0/30) 0 (0/30) √

Greece – – – 16.67 (5/30) 0 (0/30) √

Iceland – – – 0 (0/30) 0 (0/30) √

India – – – 0 (0/30) 0 (0/30) √

Indonesia – – – 100 (30/30) 26.67 (8/30) X

Ireland 0 (0/30) 0 (0/30) √ 23.33 (7/30) 0 (0/30) √

Italy 60 (18/30) 53.33 (16/30) √ 0 (0/30) 0 (0/30) √

Japan 100 (30/30) 100 (30/30) √ 0 (0/30) 0 (0/30) √

Kenya 60 (18/30) 100 (30/30) √ 83.33 (25/30) 70 (21/30) √

Mexico – – – 100 (30/30) 6.67 (2/30) X

NewZealand 50 (15/30) 6.67(2/30) X – – –

Norway 70 (21/30) 100 (30/30) √ 6.67 (2/30) 0 (0/30) √

Pakistan 100 (30/30) 100 (30/30) √ 6.67 (2/30) 36.67 (11/30) √

Panama – – – 100 (30/30) 100 (30/30) √

Philippines – – – 43.33 (13/30) 16.67 (5/30) √

Portugal – – – 100 (30/30) 100 (30/30) √

Romania – – – 0 (0/30) 0 (0/30) √

South Africa 83.33 (25/30) 60 (18/30) √ 100 (30/30) 100 (30/30) √

South Korea 100 (30/30) 100 (30/30) √ 50 (15/30) 0 (0/30) √

Spain 40 (12/30) 100 (30/30) X 73.33 (22/30) 0 (0/30) X

Sweden – – – 0 (0/30) 0 (0/30) √

United States 100 (30/30) 83.33 (25/30) √ 20 (6/30) 0 (0/30) √

Note: “-” : The country did not meet the selection requirements at this stage. Period of risk forecasting: November 1 to 30, 2020 (pre-vaccine era) and June 1

to 30, 2021 (post-vaccine era).
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We found that foreign flights played a dominant role in the global

spread of COVID-19 in the pre-vaccine era, with a combined contri-

bution of 18.84% (Figure 1a) (Bo et al., 2021; Liu et al., 2020; Mid-

delburg & Rosendaal, 2020; Wells et al., 2020; Wong et al., 2020).

The contribution gradually shifted from foreign migration to domes-

tic flights with time (Figure 1b). The most important policy-related

factor was income support (previous and current week), with a com-

bined contribution of 12.59%, implicating the importance of economic

support and the complex behaviours of human society during an out-

break of an emerging infectious disease. The contributions of socioeco-

nomic and medical factors were less critical than the dominant policy-

and travel-related factors. However, their effects cannot be neglected.

For example, countries with the greatest contributions from socioeco-

nomic factors (Colombia, Kenya and Chile; Table S4) were underdevel-

oped regions, implying that the socioeconomic impact of the pandemic

was more pronounced in these regions. During a pandemic, the effect

of environmental factors is difficult to tease out due to the greater

impact of other factors, but environmental factors have been shown

to contribute to transmission (Jia et al., 2020; Malki et al., 2020; Yang

et al., 2020). Some countries, such as Argentina, showed a relatively

large contribution (15.76%) from environmental factors, although this

was not a universal finding (Table S4). Overall, the differential imple-

mentation of control policies combinedwith the emergence of variants

with greater infectivity has created additional uncertainties regard-

ing recurrent global outbreaks (Figure 2e,f). The dynamic contribu-

tion of different factors together with their time-series data provides a

visual description of the drivers and specific mechanisms of pandemic

rebound (Figure 2 and Figure S4). In the case of Japan, the rebound in

the pandemic (June–August, 2020)was the result ofweakpolicy imple-

mentation, whereas Finland showed a rebound because of a combina-

tion of policy relaxation andweakened travel restrictions (Figure S4).

A comparative analysis of countries with and without rebound indi-

cated that strict contact tracing and effective control of population

movement during the rising stage, whilemaintaining control during the

fading stage, were crucial factors for effective control of COVID-19

in single-peak countries (Figure 2a,d). However, countries that expe-

rienced a rebound of COVID-19 showed relaxed control policies in

the later stage (Figure 2b,e), along with the promoting effect of pop-

ulation movement (both domestic and international) and relaxed test-

ing policies and public event cancellation. The relaxation of restric-

tions should be carefully evaluated (The, 2020), especially after the

implementation of a vaccination program, and restrictions are essen-

tial when considering additional reinforcement factors such as new

mutants (Figure 2f). Effectively controlling the COVID-19 pandemic

andpreventing a rebound require a systematic approach (Coccia, 2020;

Sarkodie & Owusu, 2020). Therefore, the quantitative estimation of

effective measures and their contributions informs precise prevention

and control measures and provides important suggestions for policy-

makers, which have been shown to be crucial for controlling the pan-

demic (Ferrante et al., 2021; Greer et al., 2020).

The findings of this study also facilitate rebound risk forecasting.

For this purpose, 1-month predictions for the selected countries in

the pre- and post-vaccine eras were made with an accuracy of 0.78

and 0.81, respectively. The large amount of heterogeneity may explain

the incorrect predictions in some countries, as the key contributing

factors may not be comprehensive for these countries and their rela-

tionships may not be simple and universal. For example, the rebound

risk prediction for November 2021 was incorrect for France, likely

due to an excess positive contribution of foreign flights in the model,

which increased the likelihood of a rebound (detailed in Table S7). This

resultmayhavebeen influencedbymore specific travel policies and the

implementation of screening at the airport. Risk misidentification was

most common in SouthAmerican countries in the post-vaccine era (e.g.,

Argentina, Bolivia and Chile), which may be related to the unique cir-

culation pattern of COVID-19 in these countries, in which Gamma and

Lambda variants were dominant at a time when the Delta variant was

dominant in other countries.

There are several limitations to our study. First, although the repre-

sentation of the countries included in the analysis was considered, the

limited number of countries included in the study due to data quality

requirementsmay have affected the generalization of some of our con-

clusions. Data frommore countries should be collected and analyzed in

future studies. Second, multiple machine learning algorithms coupled

with an interpretable framework were used to explore the complex

interactions between various influencing factors, to try to improve the

reliability and robustness of the optimized models. Although machine

learning models are well developed, show advantages in handling non-

linear problems and are broadly used in other fields, they are less fre-

quently used in the field of policy evaluation. In the future, more com-

prehensive investigations are needed, coupled with studies based on

mechanistic models. A more general framework for the effective eval-

uation and optimization of control policies is also needed and should

be the next priority. Finally, the daily basic reproductive number was

the only indicator of the spread of COVID-19 used in this study. This

metric captures only one aspect of the disease. Theremay bemore rel-

evant disease burden indices for COVID-19, such as death or hospital-

ization rates. These outcomes and their influencing factors should be

comparatively explored in future studies. The framework proposed in

this study was helpful in quantitively understanding the contributions

of various factors to the spread of COVID-19. The patterns observed

in this study provide insights to facilitate the development of improved

prevention and control strategies for the ongoingCOVID-19 pandemic

and for future pandemics.

5 CONCLUSION

Factors that affect the spread of COVID-19 in 39 countries were sys-

tematically evaluated and prioritized using an interpretable machine

learning framework. Policy- and travel-related factors were found to

be the main drivers, with policy-related factors being more dominant

(more than 60% of the overall contribution). Travel-related factors

played an important role in the earlier stage, whereas policy-related

interventions were dominant contributors at the later stage, espe-

cially in countries that experienced a rebound. Care should be taken

when deciding to relax non-pharmaceutical interventions, even after
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the implementation of a vaccination program, and new mutants with

greater infectivity may worsen the situation and cause recurrent out-

breaks. A reliable prediction model was built based on the findings of

the study, and this model may be used to evaluate potential control

strategies. A quantitative understanding of the combinatorial effect of

various control measures is needed for precisely and effectively con-

trolling the spread of COVID-19.
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