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Drivers and forecasts of multiple waves of the coronavirus
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Abstract

Coronavirus disease 2019 (COVID-19) has become a global pandemic and continues
to prevail with multiple rebound waves in many countries. The driving factors for the
spread of COVID-19 and their quantitative contributions, especially to rebound waves,
are not well studied. Multidimensional time-series data, including policy, travel, med-
ical, socioeconomic, environmental, mutant and vaccine-related data, were collected
from 39 countries up to 30 June 2021, and an interpretable machine learning frame-
work (XGBoost model with Shapley Additive explanation interpretation) was used
to systematically analyze the effect of multiple factors on the spread of COVID-19,
using the daily effective reproduction number as an indicator. Based on a model of the
pre-vaccine era, policy-related factors were shown to be the main drivers of the spread
of COVID-19, with a contribution of 60.81%. In the post-vaccine era, the contribution
of policy-related factors decreased to 28.34%, accompanied by an increase in the con-
tribution of travel-related factors, such as domestic flights, and contributions emerged
for mutant-related (16.49%) and vaccine-related (7.06%) factors. For single-peak
countries, the dominant ones were policy-related factors during both the rising and
fading stages, with overall contributions of 33.7% and 37.7%, respectively. For double-
peak countries, factors from the rebound stage contributed 45.8% and policy-related
factors showed the greatest contribution in both the rebound (32.6%) and fading
(25.0%) stages. For multiple-peak countries, the Delta variant, domestic flights (cur-

rent month) and the daily vaccination population are the three greatest contributors
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1 | INTRODUCTION

An emerging infectious disease, coronavirus disease 2019 (COVID-
19), caused by severe acute respiratory syndrome coronavirus 2, has
rapidly spread globally. On March 11, 2020, the World Health Orga-
nization declared COVID-19 as a global pandemic. Until 11 February
2022, there were 405,688,274 COVID-19 cases globally (Looi, 2020;
Roser et al., 2020). The number of new cases continues to increase
every day, and COVID-19 remains a global concern after 2 years of
circulation.

Since July 2020, there has been a second wave of infections in many
countries (Cacciapaglia et al., 2020; Wise, 2020; Xu & Li, 2020; Zhu
et al., 2020), especially in Europe and Asia. Vaccine development was
also ongoing in many countries during that period. In early 2021, coun-
tries around the world began to implement extensive vaccination pro-
grams with the aim of ending the COVID-19 pandemic (Awadasseid
et al., 2021). However, new virus variants with greater transmissibil-
ity have emerged, combined with control measures, and caused mul-
tiple waves of record-breaking numbers of new infections (Mohapa-
tra et al., 2022; Sonabend et al., 2021). The ongoing pandemic has
become a long-term battle, not just for public health, as governments
are required to balance economic recovery, political votes and control
of the COVID-19 pandemic (Di Domenico et al., 2020; Ferrante et al.,
2020; Leung et al.,, 2020). As a result, decision-makers have adjusted
intervention policies dynamically, while considering many types of
factors, including the status of the COVID-19 pandemic (Panovska-
Griffiths et al., 2020; Qiu et al., 2020; Sebhatu et al., 2020), the charac-
teristics of new virus variants, vaccination status, socioeconomic con-
ditions (Kandel et al., 2020) and medical resources (Brauner et al.,
2020), to contain the pandemic.

The combined effects of various control measures are complicated,
and the effect could be context dependent for a specific country. Those
understandings are important for precise control and more quanti-
tative studies are needed. Various non-pharmaceutical interventions
(Flaxman et al., 2020; Haug et al., 2020; Hsiang et al., 2020; Russell
etal.,2021;Sunetal.,2020) implemented by many countries have been
shown to be useful to contain and control the spread of the pandemic.
Without restrictions, population migration, which may increase the risk
of contact with infected people, may lead to the rapid spread of the dis-
ease (Caoetal.,, 2020; Kubota et al., 2020; van Oosterhout et al., 2021).
This has been extensively studied based on data from many countries
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(8.12%, 7.59% and 7.26%, respectively). Forecasting models to predict the rebound
risk were built based on these findings, with accuracies of 0.78 and 0.81 for the pre-
and post-vaccine eras, respectively. These findings quantitatively demonstrate the sys-
tematic drivers of the spread of COVID-19, and the framework proposed in this study
will facilitate the targeted prevention and control of the ongoing COVID-19 pandemic.

COVID-19, forecasting, machine learning, rebound, spread

(Duhon et al., 2020). Soft power at the national level, including social
and economic support and the reasonable optimization and mobiliza-
tion of medical resources, has the potential to slow down and affect
the spread of COVID-19 (Haider et al., 2020; Li et al., 2020). In addi-
tion, many studies have found that climate and other environmental
factors may also play roles in the spread of COVID-19 (Price et al.,
2019; Quetal., 2020). Overall, the spread and control of COVID-19isa
complex process involving various complex heterogeneous factors that
are intertwined (Han et al., 2022). This nonlinear system becomes even
more complex with the emergence of new virus variants, the uncertain
effect of vaccination on the human population (Sowa et al., 2021) and
the heterogeneity of regional developmental levels. A well-developed
interpretable machine learning framework (Ayoub et al., 2021; Murri
et al., 2021) may adapt to this complex scenario and provide reason-
able interpretation and predictive capabilities, which are critical for a
greater understanding of the mechanisms underlying the effectiveness
of various COVID-19 control measures. Ultimately, this will facilitate
the development and implementation of targeted and precise preven-
tion and control strategies for the ongoing COVID-19 pandemic.

In this study, factors and datasets related to the spread and con-
trol of COVID-19 were collected as much as possible from all over
the world and used for further analysis. The effects of various factors
on the spread of COVID-19 were studied based on a nonlinear inter-
pretable machine learning framework. Contributing factors were iden-
tified and characterized for different phases of the pandemic, before
and after vaccine implementation, and for countries with or without
rebound waves. The driving factors and potential mechanisms were

explored, and forecasting efforts were made.

2 | MATERIALS AND METHODS
2.1 | Study design

This study was designed as a quantitative study of the contribution
of multi-dimensional factors to the spread of COVID-19, using the
effective reproductive number as an indicator, and to the occurrence
of multiple waves of infections. Specifically, this study focused on the
following aspects: (1) the quantification of the overall contribution of
multi-dimensional factors, before and after vaccine implementation;

(2) a comparative analysis of the factors influencing the rising and
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fading stages of the pandemic, in countries with or without rebound
waves, and before and after vaccine implementation; and (3) rebound
risk forecasting for the spread of COVID-19.

2.2 | Data

Daily numbers of COVID-19 cases were collected from 39 countries
up to 30 June 2021. These 39 countries were selected based on the
following principles: (1) they represented countries from five conti-
nents, (2) the total number of cases in these countries was among the
highest during the study period and (3) data for multi-dimensional fac-
tors during the same period were available. The COVID-19 pandemic
was divided into two phases—the pre-vaccine era and the post-vaccine
era—using the date when vaccination began in each country as the
dividing date. Of the 39 countries selected, seven single-peak countries
without a rebound wave and 13 double-peak countries with a rebound
wave were identified in the pre-vaccine era (Figure S1), while 36 multi-
peak countries with multiple rebound waves (excluding China, Aus-
tralia and New Zealand, which had no rebound wave) were identified
in the post-vaccine era. A rebound wave was identified when the num-
ber of new COVID-19 cases exceeded the average value of the peak in
the pre-vaccine era for three consecutive weeks.

The factors analyzed were divided into the following groups: policy-
related factors (including 13 specific non-pharmaceutical interven-
tions in the previous week and at the current time point), travel-related
factors (including domestic and foreign air passenger flow in the pre-
vious month and the current month), socioeconomic factors (popula-
tion, population density, per capita income, aging ratio and sex ratio),
environmental factors (maximum temperature, minimum temperature,
average temperature, relative humidity and absolute humidity) and
medical factors (number of doctors per 1000 residents, number of
nurses, number of pharmacists, number of beds, medical expenditure
quota, cardiovascular death rate and diabetes prevalence). Addition-
ally, the number of daily vaccinations was considered as a vaccine-
related factor, and information regarding existing virus variants was
included in the mutant-related factor category. All of these data were
analyzed at the national level.

Effective reproductive number: The daily effective reproductive num-
ber (R;) was used as an indicator of the spread of COVID-19. R; indi-
cates the average number of secondary cases caused by one infected
person per day (Fernandez-Naranjo et al., 2021), and it was calculated
based on the Susceptible-Infected-Recovered model (Arroyo-Marioli
et al,, 2021; Kermack & Mckendrick, 1927). When R; < 1, maintain-
ing the current prevention and control measures is expected to grad-
ually control an infectious disease epidemic. In contrast, when R; >1,
the infectious disease will continue to spread, suggesting that the pre-
vention and control measures need to be optimized and strengthened.
The R; values for COVID-19 in the 39 countries included in the analy-
sis were obtained from Our World in Data (https://ourworldindata.org/
covid-cases).

Policy-related factors: These data were obtained from the
Oxford COVID-19 Government Response Tracker (OxCGRT,

el es*“} *

s CAOET AL.

https://github.com/OxCGRT/covid-policy-tracker), which includes
data on the level of specific measures (strictness of implementation)
taken by governments during the outbreak. Thirteen specific measures
were analyzed, as detailed in Table S1. These classification variables
were converted into a score in the range of [0,100]. The details of this
calculation are presented in the Materials and Methods section of the
Appendix.

Travel-related factors: Data on air passenger flow, based on monthly
statistical measures at the national level, were collected from the Offi-
cial Aviation Guide. These data included global passenger flow to the
countries (foreign flights) and intra-country air passenger flow (domestic
flights). A 1-month lag time was also included (Cao et al., 2020) for these
data.

Socioeconomic factors: The number of residents (population), popula-
tion density (density), per capita national income (GDP), percentage of
the population aged >65 years (0ld%) and sex ratio (the ratio of men
to woman, sex ratio) were collected from Our World in Data (https:
//ourworldindata.org/covid-cases).

Medical factors: Health resource data were obtained from the World
Bank (https://data.worldbank). These data included the number of doc-
tors (doctor), nurses (nurse), pharmacists (pharmacist) and beds (beds)
and the health expenditure per 1000 people (health expenditure). Addi-
tional health data, such as the cardiovascular death rate (cardiovascular
death rate) and diabetes prevalence (diabetes prevalence), were obtained
from Our World in Data (https://ourworldindata.org).

Environmental factors: The daily maximum temperature, minimum
temperature, average temperature, relative humidity and absolute
humidity during the study period were collected from the National
Oceanic and Atmospheric Administration (https://www.noaa.gov/).

Mutant-related factors: The five major virus strains (alpha, beta, delta,
gamma and lambda) were considered, and the temporal proportions
referred to Alpha for Beta, Delta, Gamma and Lambda in each region
were included as free variables in the analysis. These proportions were
based on the weekly time scale in 39 countries obtained from the
Global Initiative on Sharing Avian Influenza Data (https://www.gisaid.
org/hcov19-variants/).

Vaccine factor: The number of daily COVID-19 vaccinations (daily
vaccination population) in the 39 countries was obtained from Our
World in Data (https://ourworldindata.org/covid-cases).

All time scales were unified as daily scales using the pandas time-
series resampling method (https://pandas.pydata.org/). Moreover, con-
sidering the latent period of COVID-19, lag effects for policy- and
travel-related factors were also considered and incorporated into the
model (see the Materials and Methods section in the Appendix for

more details).

2.3 | Machine learning framework

Interpretable machine learning frameworks were used to determine
the nonlinear contribution of systematic factors to the R; value. Specif-
ically, multiple candidates nonlinear regression models, including ran-

dom forest, support vector machine and extreme gradient boosting

85UB01 T SUOWIWIOD BA 181D 8|qeot[dde aup Ag peusencb ae sejole YO ‘8N Jo 9Nl 1oy AkeiqiTauluO 481 UD (SUONIPUOD-PUR-SLLIBYWOD A8 |Im Ale.q1jBulJUO/SdnL) SUOIPUOD pue SWid L a1 8es " [1Z0z/zT/Lz] uo AridiTauluo A8im AisieAiun veysbuoyz Aq z6vy T PeqY/TTTT OT/I0P/WO00 A8 Aleiq1pul|uoy/sdny Wwolj pepeojumod ‘S ‘220z ‘Z89TS98T


https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://github.com/OxCGRT/covid-policy-tracker
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://data.worldbank
https://ourworldindata.org
https://www.noaa.gov/
https://www.gisaid.org/hcov19-variants/
https://www.gisaid.org/hcov19-variants/
https://ourworldindata.org/covid-cases
https://pandas.pydata.org/

CAOETAL.

(XGBoost) (Chen & Guestrin, 2016) models, were used, and important
factors were selected using the sequential floating selection (SFS) algo-
rithm (Fjf et al., 1994; Pudil et al., 1994). The overall framework is
shown in Figure S2. SFS is a sequential feature selection method based
on the greedy search that can remove functions from all feature sets
and evaluate error functions. If the error reaches the optimal level, the
combination of the remaining features is regarded as the best feature
combination. A Bayesian search algorithm was used to identify the root
mean square error (RMSE) of the parameter sets by fitting the model.
The effect of generalization was evaluated by 10-fold cross-validation
(S. M. Lundberg et al., 2020). Two temporally non-overlapping datasets
were built based on the pre-vaccine era (a training set up to 31 Octo-
ber 2020, and a testing set from 1 November to 30 November 2020)
and post-vaccine era (a training set from January 2021 to 31 May 2021,
and atesting set from 1 June to 30 June 2021) datasets. The model with
the lowest fitting error was selected based on two training sets, and this

model was used in subsequent analyses.

2.4 | Ranking contribution of the factors

Shapley additive explanation (SHAP) is an interpretable analysis
method (S. M. Lundberg et al., 2020) for the outputs of machine learn-
ing models. It treats all features as “contributors” and generates a pre-
dictive value (SHAP value). For each predicted sample, the value of each
influencing factor, known as the feature value, for the sample was uni-
formly assigned. The SHAP value (S. Lundberg & Lee, 2017) was calcu-
lated as follows:

Yi = Ybase + fixj1) + f(xi2) + - - - + f(xin),

where the ith sample of the Nth feature is defined as x;y, the refer-
ence value of the model (the mean value of the sample target variable)
iS Ypase and f(x;y) is the SHAP value of x;y. A positive value indicates
that the feature has a positive contribution. The predicted value of the
effective reproductive number y; here is the linear combination of y},se
and f(x;y). The SHAP value was obtained based on the best model and
|f(x;j)| was used to measure the contribution of factors selected by the
SFS algorithm, which was further converted into a percentage contri-
bution value (Pan et al., 2020).

2.5 | Model evaluation and short-term pandemic
rebound risk prediction

A rebound risk model was built by considering the daily increas-
ing (Ry > 1) or decreasing (R; < 1) trend as the subject (binary)
and all factors selected as covariables. The RMSE and RZ values
were used to evaluate the model fit to R; using 10-fold cross-
validation for the training set. The accuracy, precision, recall, F1
score and area under the curve were used to evaluate the rebound

risk.
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3 | RESULTS

3.1 | Contribution of systematic factors to the
spread of COVID-19 in pre- and post-vaccine eras

On the basis of designed framework (Figure S2), the XGBoost model
was selected (Table S2) and 1-week lag was used (Table S3) for subse-
quent analyses, as it showed the best fit with the training set (Table S2).
Therefore, XGBoost with SHAP analysis (see Materials and Meth-
ods section for further details) was chosen to identify important fac-
tors contributing to the spread of COVID-19 (R;) in 39 countries,
before and after vaccine implementation, and only top 20 factors were
shown and discussed. Overall, the RMSE and R? values, as evalua-
tion measures of the model, were 0.109 and 0.725, respectively, in
the pre-vaccine era, and 0.021 and 0.988, respectively, in the post-
vaccine era. In the pre-vaccine era, policy-related (60.81%) and travel-
related factors (18.84%) were the primary contributors to the spread
of COVID-19. Socioeconomic and medical factors accounted for 9.31%
and 6.58% of the spread of COVID-19, but environmental factors only
accounted for 4.48% (Figure 1a and Figure S3a). In the post-vaccine
era, the contribution pattern changed significantly, with policy-related
factors reduced to 28.34% and travel-related, environmental, medical
and socioeconomic factors reaching 21.67%, 9.62%, 8.64% and 8.20%,
respectively. The contributions of mutant-related and vaccine factors
reached 16.49% and 7.06%, respectively (Figure 1b and Figure S3b).
Of the travel-related factors assessed in the pre-vaccine era, only
population movement caused by foreign flights was identified as
an important factor, contributing 18.84% (Figure 1a). Of the policy-
related factors, the three greatest contributors were income sup-
port (previous week), stay-at-home requirements (previous week) and
workplace closure (previous and current week), with contributions of
10.23%, 8.29%, 7.70% and 6.59%, respectively. Of the socioeconomic
factors, GDP was the dominant contributor, with 5.80%. The contri-
bution of single medical and environmental factors was low, with the
highest percentages of 3.95% for the number of nurses and 2.69%
for relative humidity, respectively. Although foreign flights (previous
month) remained as the dominant factor with the highest contribution
in the post-vaccine era (7.75%), the contributions from domestic flights
in the current and previous months were 7.56% and 6.36%, respec-
tively. Mutant-related factors contributed significantly to the dynam-
ics of COVID-19 in the post-vaccine era, with 7.56%, 4.69% and 4.24%
contributions for delta, gamma and beta variants. The vaccine factor
also made a significant contribution to the spread of COVID-19 in the
post-vaccine era, with a contribution of 7.06%. As a result, the contri-
butions from policy-related factors were significantly reduced in the
post-vaccine era, with the top three factors—workplace closure in the
previous week and the cancellation of public events in the current and
previous weeks—contributing 5.63%, 5.63% and 4.66%, respectively.
At the country level, the overall pattern in the pre-vaccine era was
the same as the pattern observed at the global level, with policy- and
travel-related factors making the greatest contributions (Table S4).

Nevertheless, heterogeneity existed among countries, with the
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FIGURE 1 Contribution of different factors to the R; value of COVID-19 in 39 countries before (a) and after (b) vaccine implementation

contribution of policy-related factors in several countries, such as
Sweden, Mexico and Bulgaria, being as high as 70%. However, the
contribution of travel-related factors in many countries, such as
Spain, the United States and Cameroon, was 30%. Moreover, the
contributions of socioeconomic, environmental and medical factors
were low in all countries evaluated. Of note, there were noticeable
differences in the contributions of these factors in different countries.
For example, the contribution of socioeconomic factors in Colombia,
Kenya and Chile was 16.17%, 14.89% and 14.64%, respectively; the
contribution of environmental factors in Argentina, Ecuador and
Colombia was 15.67%, 13.60% and 13.21%, respectively; and the
contribution of medical factors in Algeria and Canada was 11.27%
and 9.89%, respectively. In the post-vaccine era, a significant decrease
in the dominance of policy-related factors was seen (Table S4), and
the contribution of vaccine factor was relatively high in some coun-
tries, such as Bangladesh, Canada and South Africa, which showed
contributions of 15.03%, 12.54% and 10.66%, respectively. At the
same time, the contribution of variant viral strains in these coun-
tries was also prominent, reaching 32.67%, 25.92% and 28.16%,
respectively.

3.2 | Factors related to the rebound of COVID-19

As COVID-19 continued to spread, different countries responded dif-
ferently, leading to different outcomes, with rebound waves occurring
in many countries. In the pre-vaccine era, 13 of the 39 countries ana-
lyzed had a clear rebound wave with double peaks in the number of
new cases, whereas seven countries had no rebound wave, but a clear
single peak (Figure S1). In addition, the first peak was further divided
into the rising and fading stages, and the second peak was classified

as the rebound stage. In the post-vaccine era, 36 of the 39 countries

analyzed experienced multiple rebound waves, with more than one
peak. Models were then built for the seven double-peak countries with
rebound waves, 13 single-peak countries without a rebound wave in
the pre-vaccine era and 36 countries with multiple rebounds in the
post-vaccine era (Table S5). These models had RMSE values of 0.634,
0.298 and 0.021 and R? values of 0.824, 0.712 and 0.988, respectively
(Figure 2).

Overall, factors in the rising and fading stages had similar effects on
the spread of COVID-19 in single-peak countries (Figure 2a). Policy-
and travel-related factors were dominant during the rising stage (con-
tributions of 33.7% and 18.7% in the rising and fading stages, respec-
tively), but policy-related factors were predominant in the fading stage,
reaching a contribution of 37.7% (Figure 2a). However, approximately
half (45.8%) of the contribution to the spread of COVID-19 in double-
peak countries was from factors in the rebound stage. Policy-related
factors showed contributions of 32.6% and 25.0% during the rebound
and fading stages, respectively (Figure 2b). In the post-vaccine era,
the results of the model including countries with multiple rebounds
were similar to the results of the model that included all 39 countries
(Figure 1b), with policy- and travel-related factors accounting for more
than half of the contribution, although the contribution from policy-
related factors significantly decreased (Figure 2c). Mutant-related and
vaccine factors contributed 17.7% and 7.3%, respectively, to the spread
of COVID-19 in the post-vaccine era. The contributions from environ-
mental and medical factors increased to 9.6% and 8.7% in the post-
vaccine era.

In single-peak countries (Figure 2d), the contribution of domestic
flights (previous month) in the rising stage was 18.71%, with effective
SHAP values of 0.23, indicating a positive contribution to the spread
of COVID-19. Other important factors in single-peak countries were
policy-related factors, such as contact tracing (contribution, 9.90%;

effective SHAP value, —1.14) and the cancellation of public events
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FIGURE 2 Contribution of the 20 most important factors and their effective SHAP values (sum of SHAP values) for R; at different stages of the
pandemic in single-peak (a, d), double-peak (b, €) and multiple-peak (c, f) countries. The first peak includes the rising and fading stages, and the
additional peaks were defined as the rebound stage. The colour for each group is the same as in Figure 1

(contribution, 7.11%; effective SHAP value, —0.64) in the rising stage
and school closure in the previous week (contribution, 8.03%; effec-
tive SHAP value, —0.79) and international travel controls (contribu-
tion, 7.34%; effective SHAP value, —0.32) in the fading stage. All of
these factors decreased the spread of COVID-19 (Figure 2d). However,
a more diverse range of factors from different categories was involved
in double-peak countries, many of which were present in the rebound
stage (12/20, Figure 2e). In particular, foreign flights in the rising stage
(contribution, 9.09%) and domestic flights in the fading stage (contri-
bution, 7.66%) increased the spread of COVID-19, with effective SHAP
values of 1.43 and 1.15, respectively. The cancellation of public events
in the fading stage (contribution, 8.58%) and testing policies (previous
week) in the rebound stage (contribution, 7.73%) reduced the spread
of COVID-19, with effective SHAP values of —2.69 and —0.04, respec-
tively. The contribution of foreign flights continued to decrease in the
post-vaccine era (contribution, 6.39%; effective SHAP value, —1.56;
negative effect). The Delta variant became the most influential con-
tributor to the spread of COVID-19 in the post-vaccine era (contribu-
tion, 8.12%; SHAP value, 9.18). Other virus variants, such as gamma
and beta, also had a promoting effect on the spread of COVID-19 in
the post-vaccine era, with SHAP values of 1.37 and 5.37, respectively.
The strong inhibitory effect of the vaccine was evident (contribution,
7.26%; SHAP value, —9.28). Unexpectedly, most policies had a boosting
effect on the spread of COVID-19, with SHAP values > 0, for five of the

six factors evaluated (Figure 2f).

3.3 | Rebound risk forecasting
After understanding the different contributions from various factors,
we sought to determine whether the rebound risk of COVID-19 could

be predicted. Predictive models were built based on data from 20

selected countries in the pre-vaccine era and 36 countries in the post-
vaccine era. A high risk of rebound was defined as R; > 1, and a low risk
of rebound was defined as R; < 1. Daily forecasting was then performed
for the following 30 days, based on actual data for all of the contribut-
ing factors in the model. COVID-19 rebound was defined as R; > 1 for
more than half of the 30 days. The accuracy of the risk forecast was
0.78 and 0.81 in the pre-vaccine and post-vaccine eras, respectively
(Table 1 and Table Sé).

4 | DISCUSSION

On the basis of available datasets, the contribution of systematical
factors to the spread of COVID-19 was studied through an inter-
pretable machine learning framework. Globally, policy-related and
travel-related factors (Bielecki et al., 2021; Chinazzi et al., 2020; Jia
et al., 2020) play essential roles in the spread of the COVID-19 epi-
demic during the stage when the vaccine was not yet widely avail-
able (Figure 1a). Compared with double-peak countries, the spread
of COVID-19 in single-peak countries was mostly driven by domes-
tic migration and policy-related factors (Figure 2d). Neglecting travel
restrictions (both foreign and domestic flights) in the earlier stage and
relaxing intervention policies in the later stages may increase the likeli-
hood of pandemic resurgence (Figure 2e). This remained true for the
post-vaccine era, during which unfavourable policy implementation
and new virus variants with increased infectivity caused multi-peak
rebounds, even after vaccine implementation (Figure 2f). A forecasting
model based on this knowledge gave reasonable predictions for the risk
of rebound. Our study sheds light on quantitatively understanding the
mechanisms underlying the global spread of COVID-19 and will facil-
itate the precise and cost-effective control of the ongoing COVID-19
pandemic (Reddy et al., 2021).
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TABLE 1 Rebound risk forecasting for 39 countries
Pre-vaccine era Post-vaccine era
Rebound Correct Rebound Correct

Country Rebound (%) prediction (%) prediction Rebound (%) prediction (%) prediction
Afghanistan 100 (30/30) 100 (30/30) \/ 93.33(28/30) 100 (30/30) \/
Algeria = = = 100 (30/30) 100 (30/30) \/
Argentina - - - 0(0/30) 53.33(16/30) X
Austria - - - 0(0/30) 0(0/30) v
Australia 36.67 (11/30) 3.33(1/30) Vv - - -
Bangladesh - - 100 (30/30) 86.67 (26/30) \/
Bolivia - - 40(12/30) 100 (30/30) X
Bulgaria = = = 0(0/30) 0(0/30) \/
Cameroon - - - 0(0/30) 0(0/30) v
Canada 100 (30/30) 100 (30/30) v 0(0/30) 0(0/30) v
Chile 26.67 (8/30) 3.33(1/30) \/ 26.67 (8/30) 63.33(19/30) X
China 73.33(22/30) 86.67 (26/30) \/ = = =
Colombia - - - 93.33(28/30) 86.67(26/30) \/
Denmark 100 (30/30) 100 (30/30) \/ 6.67 (2/30) 0(0/30) \/
Ecuador - - - 0(0/30) 0(0/30) v
Finland 100 (30/30) 100 (30/30) v 43.33(13/30) 0(0/30) v
France 26.67 (8/30) 100 (30/30) X 0(0/30) 0(0/30) \/
Germany 100 (30/30) 100 (30/30) \/ 0(0/30) 0(0/30) \/
Greece - - - 16.67 (5/30) 0(0/30) \/
Iceland - - - 0(0/30) 0(0/30) v
India - - - 0(0/30) 0(0/30) v
Indonesia - - - 100 (30/30) 26.67 (8/30) X
Ireland 0(0/30) 0(0/30) \/ 23.33(7/30) 0(0/30) \/
Italy 60 (18/30) 58.33(16/30) \/ 0(0/30) 0(0/30) \/
Japan 100 (30/30) 100 (30/30) \/ 0(0/30) 0(0/30) \/
Kenya 60 (18/30) 100 (30/30) v 83.33(25/30) 70 (21/30) v
Mexico - - - 100 (30/30) 6.67 (2/30) X
New Zealand 50(15/30) 6.67(2/30) X = = =
Norway 70(21/30) 100 (30/30) \/ 6.67 (2/30) 0(0/30) \/
Pakistan 100 (30/30) 100 (30/30) \/ 6.67 (2/30) 36.67 (11/30) \/
Panama - - - 100 (30/30) 100 (30/30) vV
Philippines = = = 43.33(13/30) 16.67 (5/30) \/
Portugal - - - 100 (30/30) 100 (30/30) \/
Romania - - - 0(0/30) 0(0/30) v
South Africa 83.33(25/30) 60 (18/30) \/ 100 (30/30) 100 (30/30) \/
South Korea 100 (30/30) 100 (30/30) v 50 (15/30) 0(0/30) v
Spain 40(12/30) 100 (30/30) X 73.33(22/30) 0(0/30) X
Sweden - - - 0(0/30) 0(0/30) v
United States 100 (30/30) 83.33(25/30) \/ 20(6/30) 0(0/30) \/

Note: “-" : The country did not meet the selection requirements at this stage. Period of risk forecasting: November 1 to 30, 2020 (pre-vaccine era) and June 1

to 30, 2021 (post-vaccine era).
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We found that foreign flights played a dominant role in the global
spread of COVID-19 in the pre-vaccine era, with a combined contri-
bution of 18.84% (Figure 1a) (Bo et al., 2021; Liu et al., 2020; Mid-
delburg & Rosendaal, 2020; Wells et al., 2020; Wong et al., 2020).
The contribution gradually shifted from foreign migration to domes-
tic flights with time (Figure 1b). The most important policy-related
factor was income support (previous and current week), with a com-
bined contribution of 12.59%, implicating the importance of economic
support and the complex behaviours of human society during an out-
break of an emerging infectious disease. The contributions of socioeco-
nomic and medical factors were less critical than the dominant policy-
and travel-related factors. However, their effects cannot be neglected.
For example, countries with the greatest contributions from socioeco-
nomic factors (Colombia, Kenya and Chile; Table S4) were underdevel-
oped regions, implying that the socioeconomic impact of the pandemic
was more pronounced in these regions. During a pandemic, the effect
of environmental factors is difficult to tease out due to the greater
impact of other factors, but environmental factors have been shown
to contribute to transmission (Jia et al., 2020; Malki et al., 2020; Yang
et al.,, 2020). Some countries, such as Argentina, showed a relatively
large contribution (15.76%) from environmental factors, although this
was not a universal finding (Table S4). Overall, the differential imple-
mentation of control policies combined with the emergence of variants
with greater infectivity has created additional uncertainties regard-
ing recurrent global outbreaks (Figure 2e,f). The dynamic contribu-
tion of different factors together with their time-series data provides a
visual description of the drivers and specific mechanisms of pandemic
rebound (Figure 2 and Figure S4). In the case of Japan, the rebound in
the pandemic (June-August, 2020) was the result of weak policy imple-
mentation, whereas Finland showed a rebound because of a combina-
tion of policy relaxation and weakened travel restrictions (Figure S4).

A comparative analysis of countries with and without rebound indi-
cated that strict contact tracing and effective control of population
movement during the rising stage, while maintaining control during the
fading stage, were crucial factors for effective control of COVID-19
in single-peak countries (Figure 2a,d). However, countries that expe-
rienced a rebound of COVID-19 showed relaxed control policies in
the later stage (Figure 2b,e), along with the promoting effect of pop-
ulation movement (both domestic and international) and relaxed test-
ing policies and public event cancellation. The relaxation of restric-
tions should be carefully evaluated (The, 2020), especially after the
implementation of a vaccination program, and restrictions are essen-
tial when considering additional reinforcement factors such as new
mutants (Figure 2f). Effectively controlling the COVID-19 pandemic
and preventing a rebound require a systematic approach (Coccia, 2020;
Sarkodie & Owusu, 2020). Therefore, the quantitative estimation of
effective measures and their contributions informs precise prevention
and control measures and provides important suggestions for policy-
makers, which have been shown to be crucial for controlling the pan-
demic (Ferrante et al., 2021; Greer et al., 2020).

The findings of this study also facilitate rebound risk forecasting.
For this purpose, 1-month predictions for the selected countries in

the pre- and post-vaccine eras were made with an accuracy of 0.78

Iransboundary and Emeriné Disea esf} e
o] - -~

and 0.81, respectively. The large amount of heterogeneity may explain
the incorrect predictions in some countries, as the key contributing
factors may not be comprehensive for these countries and their rela-
tionships may not be simple and universal. For example, the rebound
risk prediction for November 2021 was incorrect for France, likely
due to an excess positive contribution of foreign flights in the model,
which increased the likelihood of a rebound (detailed in Table S7). This
result may have been influenced by more specific travel policies and the
implementation of screening at the airport. Risk misidentification was
most common in South American countries in the post-vaccine era (e.g.,
Argentina, Bolivia and Chile), which may be related to the unique cir-
culation pattern of COVID-19 in these countries, in which Gamma and
Lambda variants were dominant at a time when the Delta variant was
dominant in other countries.

There are several limitations to our study. First, although the repre-
sentation of the countries included in the analysis was considered, the
limited number of countries included in the study due to data quality
requirements may have affected the generalization of some of our con-
clusions. Data from more countries should be collected and analyzed in
future studies. Second, multiple machine learning algorithms coupled
with an interpretable framework were used to explore the complex
interactions between various influencing factors, to try to improve the
reliability and robustness of the optimized models. Although machine
learning models are well developed, show advantages in handling non-
linear problems and are broadly used in other fields, they are less fre-
quently used in the field of policy evaluation. In the future, more com-
prehensive investigations are needed, coupled with studies based on
mechanistic models. A more general framework for the effective eval-
uation and optimization of control policies is also needed and should
be the next priority. Finally, the daily basic reproductive number was
the only indicator of the spread of COVID-19 used in this study. This
metric captures only one aspect of the disease. There may be more rel-
evant disease burden indices for COVID-19, such as death or hospital-
ization rates. These outcomes and their influencing factors should be
comparatively explored in future studies. The framework proposed in
this study was helpful in quantitively understanding the contributions
of various factors to the spread of COVID-19. The patterns observed
in this study provide insights to facilitate the development of improved
prevention and control strategies for the ongoing COVID-19 pandemic

and for future pandemics.

5 | CONCLUSION

Factors that affect the spread of COVID-19 in 39 countries were sys-
tematically evaluated and prioritized using an interpretable machine
learning framework. Policy- and travel-related factors were found to
be the main drivers, with policy-related factors being more dominant
(more than 60% of the overall contribution). Travel-related factors
played an important role in the earlier stage, whereas policy-related
interventions were dominant contributors at the later stage, espe-
cially in countries that experienced a rebound. Care should be taken

when deciding to relax non-pharmaceutical interventions, even after
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the implementation of a vaccination program, and new mutants with
greater infectivity may worsen the situation and cause recurrent out-
breaks. A reliable prediction model was built based on the findings of
the study, and this model may be used to evaluate potential control
strategies. A quantitative understanding of the combinatorial effect of
various control measures is needed for precisely and effectively con-
trolling the spread of COVID-19.
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