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Abstract 

Background  Stratification of DNA mismatch repair (MMR) status in patients with colorectal cancer (CRC) enables 
individual clinical treatment decision making. The present study aimed to develop and validate a deep learning (DL) 
model based on the pre-treatment CT images for predicting MMR status in CRC.

Methods  1812 eligible participants (training cohort: n = 1124; internal validation cohort: n = 482; external validation 
cohort: n = 206) with CRC were enrolled from two institutions. All pretherapeutic CT images from three dimensions 
were trained by the ResNet101, then integrated by Gaussian process regression (GPR) to develop a full-automatic DL 
model for MMR status prediction. The predictive performance of the DL model was evaluated using the area under 
the receiver operating characteristic curve (AUC) and then tested in the internal and external validation cohorts. Addi-
tionally, the participants from institution 1 were sub-grouped by various clinical factors for subgroup analysis, then 
the predictive performance of the DL model for identifying MMR status between participants in different groups were 
compared.

Results  The full-automatic DL model was established in the training cohort to stratify the MMR status, which pre-
sented promising discriminative ability with the AUCs of 0.986 (95% CI 0.971–1.000) in the internal validation cohort 
and 0.915 (95% CI 0.870–0.960) in the external validation cohort. In addition, the subgroup analysis based on the 
thickness of CT images, clinical T and N stages, gender, the longest diameter, and the location of tumors revealed that 
the DL model showed similar satisfying prediction performance.

Conclusions  The DL model may potentially serve as a noninvasive tool to facilitate the pre-treatment individualized 
prediction of MMR status in patients with CRC, which could promote the personalized clinical-making decision.
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Background
Colorectal cancer (CRC) is the third most commonly 
diagnosed malignancy in the world and the second high-
est rate of increasing incidence among all gastrointesti-
nal tumors [1, 2]. Patients with DNA mismatch repair 
deficient (dMMR)/microsatellite instability-high (MSI-
H) CRC have a short overall survival (OS) and obtain no 
benefit from adjuvant chemotherapy [3–5]. More impor-
tantly, recent studies have demonstrated dMMR/MSI-H 
is a predictive biomarker for immunotherapy, because 
dMMR/MSI-H CRCs are associated with a higher muta-
tional burden tumor neoantigen load, and dense immune 
cell infiltration [6, 7]. In addition, immunotherapy in 
patients with advanced CRC harboring dMMR/MSI 
has been approved by the United State Food and Drug 
Administration (FDA).

The National Comprehensive Cancer Network 
(NCCN) and the European Society for Medical Oncol-
ogy (ESMO) guidelines both recommended that all 
patients with CRC be tested for microsatellite instabil-
ity, a hypermutable phenotype caused by defects in DNA 
mismatch repair, which facilitated individualized clinical 
making-decisions, then maximized the benefits for CRC 
patients [8–10]. Current testing for dMMR/MSI include 
PCR-based assay for microsatellite markers and immu-
nohistochemical analysis for MMR protein expression 
[11]. While these existed approaches face distinct draw-
backs. First, routine MSI testing using IHC or PCR is not 
commonly performed on account of tedious procedures 
and the heavy financial burden [12, 13]. In addition, the 
procedure of sampling is invasive linked to potentially 
complications, which limits the dynamic monitoring of 
biological characteristics and histopathological changes 
of tumors [14]. Furthermore, the accuracy of conven-
tional biopsy specimens will be influenced by sampling 
errors, such as insufficient or inappropriate tissue sam-
pling because of tumor heterogeneity. Therefore, a non-
invasive and accurate method is highly desirable for 
pretherapeutic prediction of MMR status, to help bet-
ter stratify CRC patients before individualized clinical 
making-decision.

Recently, artificial intelligence (AI) algorithms, particu-
larly deep learning, have shown outstanding performance 
in medical image processing, advancing the field forward 
at a rapid pace [15]. A typical approach of deep learning 
termed convolutional neural network (CNN) has been 
reported to act as an alternative tool to tackle complex 
medical issues efficiently and effectively and achieve sat-
isfying performance in many diseases such as breast can-
cer, pulmonary nodules, gastrointestinal cancer and CRC 
[16–19]. Recent studies have proposed deep learning 
approaches for predicting MMR status based on hema-
toxylin and eosin histological images in CRC patients 

[20–22]. These studies reported a moderate predictive 
performance, which suggested that it is reasonable to 
speculate that deep learning approaches can achieve 
improved performance for pretherapeutic prediction of 
MMR status in CRC. However, few studies based on deep 
learning focus on routine and noninvasive computed 
tomography (CT) images.

In the present study, we aim to develop and validate a 
deep learning model based on pretherapeutic CT images 
for predicting MMR status in CRC. We hypothesized 
that DL model could make it easier and more precisive to 
stratify MMR status, which could promote the personal-
ized clinical-making decision.

Methods
Study participants
The retrospective study was approved by Ethics Com-
mittees of the two participating institutions and the 
informed consent requirement was waived due to its 
retrospective nature. Consecutive patients with histo-
logically confirmed primary CRC between March 2012 
and March 2020 were retrospectively reviewed from two 
medical institutions: the Sixth Affiliated Hospital of Sun 
Yat-sen University (Guangzhou, China, institution 1) 
and the First Affiliated Hospital of Zhengzhou University 
(Zhengzhou, China, institution 2). Our inclusion crite-
ria were patients with (i) pathologically confirmed pri-
mary CRC, (ii) available test results for MMR status, (iii) 
pretherapeutic contrast-enhanced abdominopelvic CT 
images within 2 weeks before surgery, (iv) available com-
plete clinicopathological data. The exclusion criteria were 
as follows: (i) receiving any therapy before CT examina-
tion, (ii) lacking MMR test, (iii) incomplete clinicopatho-
logical data, (iv) the interval between CT examinations 
and surgery over 2 weeks, and (v) inoperability or refusal 
of operation.

A total of 1812 eligible patients were enrolled in this 
study. The patients from institution 1 were divided into 
a training cohort (n = 1124, March 2012 to March 2018) 
and an internal validation cohort (n = 482, May 2018 to 
March 2020) by time. The 206 participants from institu-
tion 2 were assigned to an external cohort. It’s noted that 
no data from the same patients in the training and exter-
nal cohorts. The detail of the recruitment pathway was 
presented in Additional file 1: Fig. S1.

Clinicopathological characteristics
The baseline clinicopathological parameters of patients 
from institution 1, including gender, age, the levels of 
serum tumor markers, such as carcinoembryonic anti-
gen (CEA), cancer antigen 199 (CA199), cancer antigen 
125 (CA125) and cancer antigen 153 (CA153), the clini-
cal T and N stage, the longest diameter, and the location 
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of tumors, were retrospectively reviewed and recorded 
from the medical record archives. Additionally, the thick-
ness of CT images was also recorded. The overall experi-
mental design is shown in Fig. 1.

Identification of MMR status
Immunohistochemistry (IHC) analysis of mismatch 
repair (MMR) proteins expression–Formalin-fixed par-
affin-embedded (FFPE) tumors were examined the loss 
of MMR proteins (MLH1, MSH2, MSH6, and PMS2) 
expression. MMR protein loss is defined as the absence 
of nuclear staining in neoplastic cells but positive nuclear 
staining in lymphocytes and normal adjacent colonic epi-
thelium. Primary monoclonal antibodies against MLH1, 
MSH2, MSH6, and PMS2 were applied. MMR status was 
determined locally by IHC analysis and tumors display-
ing loss of at least one of four MMR proteins can be con-
sidered as deficient mismatch repair (dMMR), whereas 
those with intact MMR proteins can be classified as pro-
ficient mismatch repair (pMMR).

CT image acquisition
All patients underwent contrast-enhanced CT scans cov-
ered the abdominal and pelvic region. CT images were 
obtained using three CT scanners from two institutions. 
For institution 1, patients were examined using OPTIMA 
CT660 (GE Medical Systems, Milwaukee, WI, United 
States) or AQUILION ONE (TOSHIBA Medical Sys-
tems, Japan) scanner. For institution 2, 64-row multide-
tector device (Discovery CT750HD, GE Medical Systems, 
Waukesha, WI, United States) CT scanner was used 
to perform abdominopelvic CT scans. The acquisition 
parameters of the two institutions were as follows: tube 

voltage of 120 kV; tube current of 150–550 mA; pitch of 
0.97 to 0.99; reconstruction section thickness of 1.25 mm 
and 5 mm. The contrast agents at the dose of 1.2–1.5 mL/
kg weight were injected at a speed of 2.5–3 mL/s with a 
high-pressure pump syringe. Arterial phase was obtained 
after 25–30 s of delay after intravenous injection of con-
trast material, and portal venous phase was performed 
after 55–70 s of delay. The representative CT and immu-
nohistochemistry images of different MMR statuses were 
shown in Additional file 5: Material S1.

Preliminary experiment
All CT image data were derived from the Picture Archiv-
ing and Communication System (PACS) then converted 
into a unified Communications in Medicine (DICOM) 
format and stored as Nifti format on a case-by-case 
basis for further analysis. A preliminary experiment was 
conducted to determine the performance of region of 
interest (ROI)-based labeling approaches (method 1) for 
modeling versus ROI-free analysis (method 2) in predic-
tion of MMR status for CRC patients, then that approach 
with better predictive performance would be selected as 
the final data processing method in the present study. 
The preliminary experiment consisted of 100 partici-
pants randomly selected from institution 1, including 50 
patients with dMMR and 50 with pMMR.

For the method 1, three-dimensional manual segmen-
tation of the tumor ROI was performed on the portal 
venous phase CT images by one radiologist with 10 years 
of experience with CRC diagnosis, using the free open-
source software ITK-SNAP software (version 2.2.0, 
http://​www.​itksn​ap.​org), with careful exclusion of perico-
lonic fat and mesentery air. Note that each segmentation 

Fig. 1  The overall experimental design in the study

http://www.itksnap.org
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was validated by a senior radiologist, who had 20 years of 
experience. Next, the obtained images were segmented 
and stored as PNG image files with the same resolution 
based on the axial direction, then divided into training 
group and test group. For the method 2, we directly pro-
cessed the images of the original Nifti format files with-
out delineating the ROIs, and these images also were 
converted and stored as PNG image files, then processed 
by the same approach as described in method 1 above. 
The images processed by the above two methods were 
saved separately as independent datasets. Whereafter, a 
classification neural network architecture (ResNet101) 
was applied to train the two independent datasets within 
the same development environment, meanwhile, we set 
the maximum training epochs to 100 epochs in both 
experiments. Finally, we compared the accuracy of the 
two models on the validation set, the model with bet-
ter predictive performance would be identified, the cor-
responding data processing method in this study was 
finalized.

The preliminary experiment suggested that the model 
based on ROI labeling approach (method 1) showed 
inferior accuracy in predicting MMR status, with the 
accuracy of 73% while the other model based on fully 
automatic deep learning analysis (model 2) yielded an 
accuracy of more than 90%. Therefore, ROI-free analysis 
based on ResNet101 was identified as the final data pro-
cessing method in the present study.

MMRnet development
On the basis of the preliminary experiment, we selected 
the method 2 (ROI-free) to process CT images data and 
construct the predictive model named “MMRnet”. It’s 
noted that all 1812 enrolled patients received abdomin-
opelvic contrast-enhanced CT, which covered the whole 
tumors of colon or rectum. All CT images data were 
derived from the PACS, then converted into a unified 
Communications in Medicine (DICOM) format and 
stored as Nifti format on a case-by-case basis as similar as 
the preliminary experiment. By introducing the opencv-
python package and writing related packages, the Nifti 
format files were divided into PNG image files with the 
same resolution in the axial direction and divided into 
training files and test files based on the axial direction.

The ResNet101 architecture, one of Resnet model, 
was utilized to train the pre-therapeutic CT imaging 
data and build the network to identify the MMR status, 
which contains one 7*7 convolutional layer, one max 
pooling layer, 33 bottleneck and one fully connected 
layer. Each bottleneck contains one 1 × 1 convolutional 
layer, one 3 × 3 convolutional layer and one 1 × 1 con-
volutional layer. The final fully connected layer output 
prediction. Images were transformed into matrices and 

input to the ResNet101 neural networks. During the 
training process, we used a cross-entropy loss function 
and Stochastic Gradient Descent (SGD). We set the ini-
tial learning rate to 0.001, the weight decay to 0.005, 
and the batch size to 128. The final epoch of model 
training was 100. In this study, we analyzed multi-axial 
CT images to develop a 3D predictive model, all CT 
images of the training cohort were automatically rec-
ognized and interpreted by ResNet101 with Pytorch 
(version 1.1.0), and the corresponding information of 
different axial CT images was obtained. Note that the 
mapping relationship between different axial images is 
considerably complex, and it is difficult to fuse complex 
information by using a general linear model. In order to 
take full advantage of all image information, we applied 
the Gaussian process regression (GPR) model to fuse 
the information of different axial images for automatic 
interpretation results of CT images. The GPR mod-
els are constructed from classical statistical models by 
replacing latent functions of parametric form by ran-
dom processes with Gaussian prior, which is widely 
used in regression and classification tasks [23]. Addi-
tionally, the model can utilize prior prediction knowl-
edge to provide predictive results. For regression tasks 
of large dataset, the GPR can reduce computational 
complexity [24]. The GPR model was used to perform 
regression analysis on all CT image interpretation 
results, which improved the accuracy of fusion results 
to a certain extent.

The training model performance was evaluated using 
multi-fold cross-validation. The squared exponential 
function was finally set as the model kernel function:

x_i and x_j represents different image interpretation 
results. The GPR model was fused with neural network 
and finally achieved automatic machine diagnosis of 
MMR status (dMMR = 1 or pMMR = 0). The deep learn-
ing model workflow is presented in Fig. 2.

Predictive performance of the MMRnet
The predictive performance of MMRnet was trained to 
its optimum in the training cohort and then tested in the 
two validation cohorts. Receiver operating characteris-
tic curve (ROC) analysis was performed to evaluate the 
performance of MMRnet. The optimal cutoff threshold 
was identified by maximizing Youden index (sensitiv-
ity + specificity − 1), then the area under the receiver 
operating characteristic curve  (AUC), sensitivity, speci-
ficity, accuracy, positive predictive value (PPV), and neg-
ative predictive value (NPV) were then calculated with 

cov
(

xi, xj
)

= exp(−
(xi − xj)

2

2
)
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the cutoff of ROC curve identified in the primary cohort, 
which was also applied to the validation cohorts.

Ablation experiments
To investigate which networks are suitable for accurate 
MMR status prediction based on ROI-free analysis, we 
applied the ResNet101 and the VGG-19 network to con-
struct the prediction model respectively, then compared 
their predictive performance in terms of the AUC value.

Statistical analysis
The clinical parameters were compared and analyzed 
by Student t test for continual variables and Chi-square, 
Fisher’s exact, or Mann–Whitney U tests for categorical 
variables. Statistical analysis was conducted with R soft-
ware (version 3.5.0; http://​www.​Rproj​ect.​org), MATLAB 
(version 2020a; Mathworks, Natick, MA, USA) and Med-
Calc Software (version 18.2 Belgium). A result was con-
sidered to indicate a significant difference with a p value 
of less than 0.05.

Results
Patient characteristics
In the present study, 481 patients with dMMR sta-
tus determined by the IHC analysis, with prevalence of 
24.3% (390/1606) in institution 1 and 44.2% (91/206) in 

institution 2. Patient characteristics and a comparison 
between patients with dMMR and pMMR in institution 1 
are presented in Table 1. In the training cohort and inter-
nal validation cohort, no significant difference was found 
between the dMMR status and pMMR status groups in 
terms of gender and the levels of serum CEA, CA199, 
CA153 (p > 0.05). However, regarding the age, N stage 
and tumor location, significant differences were observed 
between the two groups in both cohorts from institution 
1.

Predictive performance of the ResNet classification model
In comparison of the predictive performance of 
ResNet101 and VGG-19 in predicting the MMR status, 
the ResNet101 showed the superior prediction perfor-
mance, with a higher AUC of 0.997 (95% CI 0.995–1.000, 
p < 0.001), the corresponding ROC curves were present in 
Additional file 2: Fig. S2. As demonstrated in the Fig. 3, 
the heatmap demonstrated that the region of red color 
means the higher possibility of the presence of predic-
tive features, and these regions were important in making 
the diagnosis for the neural network, which visualizes the 
image features corresponding to different convolution 
layers.

Based on the uniaxial information of CT images, the 
DL model achieve the AUCs of 0.944, 0.762, 0.984 in the 

Fig. 2  Overview of our deep learning system. The system consists of four steps: the conversion of CT images based on three axis, model training 
based on Resnet101, model fusion by Gaussian regression and the generation of MMRnet

http://www.Rproject.org
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X, Y, Z axis respectively (Additional file 3: Fig. S3). Addi-
tionally, in the process of GPR analysis to fuse multi-axial 
information, we found that the MMRnet model had the 

optimum prediction performance while the Gauss-
ian process regression squared index was adopted, the 
details were presented in Additional file  4: Fig. S4. In 

Table 1  Characteristics of patients in institution 1

IQR: interquartile range; dMMR: DNA mismatch repair deficient; pMMR: mismatch repair-proficient; cT stage: baseline clinical tumor stage; cN stage: baseline clinical 
lymph node stage; CEA: carcinoembryonic antigen; CA199: cancer antigen 199; CA125: cancer antigen 125; CA153: cancer antigen 153

Variable Training cohort (n = 1124) Internal validation cohort (n = 482)

dMMR (n = 273) pMMR (n = 851) p value dMMR (n = 117) pMMR (n = 365) p value

Age 54.0 (42.8, 64.0) 60.0 (50.0, 68.0) < 0.001 57.0 (44.7, 65.3) 60.0 (51.0, 67.3) 0.022

Gender 0.762 0.241

 Male 169 516 64 224

 Female 104 335 53 141

cT stage 0.145 0.019

 1–2 3 19 3 14

 3 168 550 62 241

 4a 94 243 52 107

 4b 8 39 0 3

cN stage < 0.001 0.005

 0 69 250 17 89

 1 108 443 66 214

 2 96 158 34 62

Location < 0.001 < 0.001

 Right 168 284 84 119

 Left 105 567 33 246

Tumor marker

 CEA (IQR) 12.1 (1.4, 4.5) 80.3 (2.1, 13.0) 0.164 10.6 (1.6, 4.3) 23.7 (2.3, 11.1) 0.241

 CA125 (IQR) 19.4 (8.6, 17.8) 26.3 (8.7, 21.8) 0.017 17.1 (8.2, 17.3) 32.6 (9.1, 23.4) 0.120

 CA199 (IQR) 150.9 (2.7, 20.2) 536.4 (4.1, 30.1) 0.247 27.0 (2.8, 14.8) 156.4 (3.9, 24.3) 0.243

 CA153 (IQR) 10.4 (6.3, 13.0) 10.4 (6.3, 12.2) 0.990 9.1 (6.0, 12,1) 10.4 (6.6, 12.2) 0.202

Fig. 3  The heatmap. The heatmaps highlight that the region of red color means the higher possibility of the presence of predictive feature, these 
regions were important in making the diagnosis for the neural network
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this condition, for stratifying MMR status, the DL model 
were developed in the training cohort to automatically 
classify the MMR status, then tested in two validation 
cohorts, which achieved promising discriminative ability, 
with AUCs of 0.986 (95% CI 0.971–1.000) in the inter-
nal validation cohort and 0.915 (95% CI 0.870–0.960) in 
the external validation cohort. The sensitivity, specificity, 
accuracy, PPV and NPV were also present in Table 2 and 
Fig. 4.

Subgroup analysis
Subgroups analyses also were performed in addition to 
main analysis in order to assess prediction performance 
in different subgroups based on the thickness of CT 
images, clinical T and N stages, gender, the longest diam-
eter and location of tumor in participants enrolled from 
institution 1. The subgroup analysis revealed that the 
MMRnet show similar satisfying prediction performance 
in all groups, as presented in Additional file  6: Material 
S2.

Discussion
We developed a fully automated classifier for stratifying 
MMR status in 1812 patients with CRC using clinically 
acquired pretherapeutic CT images from two institutes. 
It demonstrated promising performance with an AUC of 
0.986 in the internal validation cohort; moreover, when 
further validated in an external validation cohort, it dem-
onstrated robust performance, with an AUC as high as 
0.915. It’s noted that the MMRnet based on fully auto-
matic deep learning successfully triaged MMR status 
in different groups by subgroups analysis. The outper-
formance of the MMRnet model indicated that CT-based 
full-automatic deep learning could serve as a noninva-
sive tool for the pretreatment prediction of MMR status 
in CRC, further enabling the clinical implementation 
of computer-aided personalized management for CRC 
patients.

An architecture of networks was designed by parallel-
ing a max-pooling layer with a center-cropping layer to 
extract information from different scales. In our study, 
the Resnet was used for image processing, one of the 
most popular deep learning models for image analy-
sis, which ease the training of networks that are deeper 
than those used previously [25]. In addition, we applied 
the GPR model to fuse the information of different 

axial images for automatic interpretation results of CT 
images, which can reduce computational complex-
ity and improve the accuracy of fusion results to a cer-
tain extent compared with the general linear model. Our 
results displayed excellent performance using the DL 
model to stratify MMR status. Although the underly-
ing mechanism of using deep learning to predict MMR 
status remains unclear, we hypothesized that this could 
be related to tumor heterogeneity. After all, the wide-
spread application of deep learning in the non-invasive 
analysis of tumor heterogeneity in the field of oncology 

Table 2  Predictive performance of MMRnet in the internal and external validation cohorts

AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative predictive value

AUC (95% CI) Sensitivity Accuracy Specificity PPV NPV

Internal validation cohort 0.986 (0.971–1.000) 0.995 0.988 0.966 0.989 0.983

External validation cohort 0.915 (0.870–0.960) 0.896 0.913 0.934 0.945 0.876

Fig. 4  a The ROC curves of the MMRnet in the internal validation 
cohort. The AUCs were reported based on the R software. b The 
ROC curve of the MMRnet in predicting MMR status in the external 
validation cohort. The AUC was reported
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has been demonstrated in many previous studies [26, 27]. 
Additionally, it is reported that dMMR/MSI-H tumors 
tend to have distinct morphological patterns such as 
poor differentiation, mucinous differentiation, histologi-
cal heterogeneity, infiltrating lymphocytes, and signifi-
cant Crohn-like reactions at the tumor frontier [28, 29]. 
These histopathological features imply that the dMMR 
tumors may be more heterogeneous than pMMR tumors, 
which could be captured by the DL model. In our study, 
the DL model achieved excellent performance in MMR 
status prediction of CRC patients, which was compara-
ble to and even superior to the results of previous stud-
ies. It was indicated that deep learning could gain more 
high-dimensional image information about tumor het-
erogeneity that cannot be captured by human eyes [20–
22]. In addition, CT-based radiomics are predominant in 
image-based models and have been proposed to preoper-
ative discriminate dMMR and pMMR in colorectal can-
cer [30–32]. However, tumors were usually segmented 
manually in majority radiomics researches, which was 
time-consuming and inevitably caused inter-observer 
variations. These defects could be avoided by the DL 
method, and it could adaptively extract features accord-
ing to the data rather than using predefined features.

In the statistical analysis, we found the age and tumor 
location present statistical significance in the differenti-
ated dMMR group and pMMR group, indicating that the 
younger patients and the tumor located in the right colon 
were more likely to show dMMR status, which was con-
sistent with previous studies [33]. Our study identified 
that dMMR CRC occurs predominantly in the younger 
population and on the right side, which may be explained 
by the fact that the proximal and distal colon have dif-
ferent embryonic origins, leading to distinct biologi-
cal properties [34, 35]. In the present study, the clinical 
parameters were not incorporated in the final prediction 
model, mainly based on the following considerations. 
Firstly, the fully automatic DL model had outperformed 
discriminative performance in stratifying MMR status, 
with an AUC of 0.986 in the internal validation cohort. 
Meanwhile, the predictive performance was robust in 
the external validation cohort, which achieved an AUC 
of 0.915. Hence, we have reason to believe that the DL 
model developed in the present study could be consid-
ered an independent tool to predict the MMR status for 
CRC patients. In addition, due to the excellent predic-
tive performance of this DL model, the actual predictive 
efficacy of clinical parameters may be obscured when 
incorporated into the DL model. Therefore, we tend to 
construct a relatively simple and feasible DL model rather 
than a combined model incorporating the predictive clin-
ical parameters. For the clinical parameters, subgroups 

analyses were performed in addition to the main analy-
sis to assess the prediction performance in different 
subgroups in this study, and the result revealed that the 
MMRnet model showed similar satisfying prediction 
performance in all groups, that indicating the pre-ther-
apeutic CT-based DL model could potentially serve as 
an alternative approach to predict the MMR status, then 
help in clinical decision-making for CRC patients.

Our DL model has unique advantages. First, the imag-
ing data could be stored and used repeatedly, in addition, 
the noninvasive deep learning method is more conveni-
ent than the pathological approach based on biological 
specimens. Secondly, we should be cognizant that deep 
learning models can produce study results more directly 
and quickly and improve the problem of being time-
consuming and burdensome for busy clinicians com-
pared with ROI-based analysis. This may be attributed to 
the automatic feature extraction based on deep learning 
models probably have the ability to capture additional 
differences within tumors [36, 37]. Moreover, we enrolled 
a higher sample size of over 1800 CRC patients, which 
met the requirement of millions of weights to train effi-
ciently for CNN, and our model demonstrated superior 
performance to previous radiological models in terms of 
AUC values (0.74–0.82 for other models) [31, 38, 39]. In 
conclusion, it is suggested that the DL model based on 
CT images has the potential to stratify tumor MMR sta-
tus with promising effectiveness prior to surgery, chemo-
therapy, or immunotherapy in our study.

Despite promising findings, our study has some limi-
tations. First, the retrospective nature of this study 
inevitably leads to selection bias, and a prospective and 
multicenter study is required to confirm the impact of 
our model in the future so that it could serve better in 
clinical application. Second, although we had a favorable 
predictive performance in participants from an external 
institution, it did not reach a high level in the internal 
institution. We considered that no specific schemes were 
applied to deal with the parameter variations from differ-
ent scanners. Third, we explored the DL model based on 
routine CT images rather than other imaging technolo-
gies, such as MRI and Dual-Energy computed tomogra-
phy, which have been reported in previous studies [39, 
40]. Actually, CT is the most suitable and routine exami-
nation method for colorectal cancer. Finally, since there is 
no specific definition of these extracted features of deep 
learning, their interpretability should further explore 
image encoding processes in the future.

Conclusions
We have constructed and validated the fully automatic 
DL model derived from pre-therapeutic CT images, 
which can stratify MMR status in CRC, with superior 
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performance. This method could provide a potential non-
invasive tool to triage MMR status in CRC, thus further 
personalized medicine.

Abbreviations
CRC​	� Colorectal cancer
dMMR	� DNA mismatch repair deficient
MSI-H	� Microsatellite instability-high
FDA	� The United State Food and Drug Administration
NCCN	� The National Comprehensive Cancer Network
CNN	� Convolutional neural network
CEA	� Carcinoembryonic antigen
CA199	� Cancer antigen 199
CA125	� Cancer antigen 125
CA153	� Cancer antigen 153
CT	� Computed Tomography
DL	� Deep learning
PACS	� The Picture Archiving and Communication System
ROI	� Region of interest
GPR	� Gaussian process regression
ROC	� Receiver operating characteristic curve
AUC​	� The area under the receiver operating characteristic curve
PPV	� Positive predictive value
NPV	� Negative predictive value

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​023-​04023-8.

Additional file 1: Figure S1. The flowchart of inclusion and exclusion 
criteria for eligible patients in the study.

Additional file 2: Figure S2. The ROC curves of Resnet101 and VGG-19.

Additional file 3: Figure S3. The ROC curves of DL model based on the 
CT images of X, Y and Z axis respectively and the Gaussian regression 
fusion model.

Additional file 4: Figure S4. The ROC curves of different Gaussian regres-
sion models.

Additional file 5. The representative CT and immunohistochemistry 
images of different MMR statuses.

Additional file 6. The results of subgroups analyses.

Acknowledgements
Our research supported by National Key Clinical Discipline.

Author contributions
Conception and design: WC, HH, YD. Administrative support: WC, HH, QQ, YD. 
Provision of study materials or patients: WC, HH, YD, YL. Collection and assem-
bly of data: JG, JL, QW, YL, XW. Data analysis and interpretation: WC, HH, JG, 
QQ, JL, QW, JC. Manuscript writing: All authors. All authors read and approved 
the final manuscript.

Funding
The work was supported by the National Natural Science Foundation of China 
(NO. 82001765, NO. 82272800).

Availability of data and materials
The datasets used during this study are available from the corresponding 
author on reasonable request.

Declarations

Ethics approval and consent to participate
The retrospective study was approved by Ethics Committees of the two 
participating institutions, including the Sixth Affiliated Hospital of Sun Yat-sen 

University (Guangzhou, China) and the First Affiliated Hospital of Zhengzhou 
University (Zhengzhou, China). The informed consent requirement was 
waived due to its retrospective nature. In addition, the study was performed in 
accordance with the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 
Guangzhou 510655, Guangdong, China. 2 Guangdong Provincial Key Labora-
tory of Colorectal and Pelvic Floor Diseases, Guangdong Research Institute 
of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 
Guangzhou 510655, Guangdong, China. 3 Department of Medical Oncology, 
The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, 
Guangdong, China. 4 Department of Colorectal Surgery, Department 
of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 
Guangzhou 510655, Guangdong, China. 5 Department of Radiology, The 
First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, 
China. 6 School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen 
University, Shenzhen 518107, Guangdong, China. 

Received: 28 December 2022   Accepted: 27 February 2023

References
	1.	 Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer 

J Clin. 2021;71(1):7–33.
	2.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 

Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71(3):209–49.

	3.	 Goldstein J, Tran B, Ensor J, Gibbs P, Wong HL, Wong SF, et al. Multicenter 
retrospective analysis of metastatic colorectal cancer (CRC) with high-
level microsatellite instability (MSI-H). Ann Oncol. 2014;25(5):1032–8.

	4.	 Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher 
D, et al. Mismatch repair status and BRAF mutation status in metastatic 
colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, 
and FOCUS studies. Clin Cancer Res. 2014;20(20):5322–30.

	5.	 Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, et al. Impact of 
BRAF mutation and microsatellite instability on the pattern of meta-
static spread and prognosis in metastatic colorectal cancer. Cancer. 
2011;117(20):4623–32.

	6.	 Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. 
The vigorous immune microenvironment of microsatellite instable colon 
cancer is balanced by multiple counter-inhibitory checkpoints. Cancer 
Discov. 2015;5(1):43–51.

	7.	 Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. 
Genomic correlates of immune-cell infiltrates in colorectal carcinoma. 
Cell Rep. 2016;15(4):857–65.

	8.	 Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable 
evidence. Nat Rev Clin Oncol. 2010;7(3):153–62.

	9.	 Coit DG, Thompson JA, Algazi A, Andtbacka R, Bichakjian CK, Carson WE 
3rd, et al. Melanoma, Version 2.2016, NCCN clinical practice guidelines in 
oncology. Jo Natl Compr Cancer Netw. 2016;14(4):450–73.

	10.	 Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, et al. 
ESMO recommendations on microsatellite instability testing for immu-
notherapy in cancer, and its relationship with PD-1/PD-L1 expression and 
tumour mutational burden: a systematic review-based approach. Ann 
Oncol. 2019;30(8):1232–43.

	11.	 Cerretelli G, Ager A, Arends MJ, Frayling IM. Molecular pathology of Lynch 
syndrome. J Pathol. 2020;250(5):518–31.

	12.	 Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroen-
terology. 2010;138(6):2073-87.e3.

https://doi.org/10.1186/s12967-023-04023-8
https://doi.org/10.1186/s12967-023-04023-8


Page 10 of 10Cao et al. Journal of Translational Medicine          (2023) 21:214 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	13.	 Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and 
its role in the management of colorectal cancer. Curr Treat Options Oncol. 
2015;16(7):30.

	14.	 Meng X, Xia W, Xie P, Zhang R, Li W, Wang M, et al. Preoperative radiomic 
signature based on multiparametric magnetic resonance imaging for 
noninvasive evaluation of biological characteristics in rectal cancer. Eur 
Radiol. 2019;29(6):3200–9.

	15.	 Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intel-
ligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

	16.	 Jiang Y, Zhang Z, Yuan Q, Wang W, Wang H, Li T, et al. Predicting peri-
toneal recurrence and disease-free survival from CT images in gastric 
cancer with multitask deep learning: a retrospective study. Lancet Digital 
Health. 2022;4(5):e340–50.

	17.	 Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C. 
Radiomic versus convolutional neural networks analysis for classification 
of contrast-enhancing lesions at multiparametric breast MRI. Radiology. 
2019;290(2):290–7.

	18.	 Wang S, Yu H, Gan Y, Wu Z, Li E, Li X, et al. Mining whole-lung informa-
tion by artificial intelligence for predicting EGFR genotype and targeted 
therapy response in lung cancer: a multicohort study. Lancet Digital 
Health. 2022;4(5):e309–19.

	19.	 Yuan Z, Xu T, Cai J, Zhao Y, Cao W, Fichera A, et al. Development and 
validation of an image-based deep learning algorithm for detection of 
synchronous peritoneal carcinomatosis in colorectal cancer. Ann Surg. 
2022;275(4):e645–51.

	20.	 Echle A, Grabsch HI, Quirke P, van den Brandt PA, West NP, Hutchins GGA, 
et al. Clinical-grade detection of microsatellite instability in colorectal 
tumors by deep learning. Gastroenterology. 2020;159(4):1406–16.

	21.	 Jiang W, Mei WJ, Xu SY, Ling YH, Li WR, Kuang JB, et al. Clinical action-
ability of triaging DNA mismatch repair deficient colorectal cancer from 
biopsy samples using deep learning. EBioMedicine. 2022;81: 104120.

	22.	 Yamashita R, Long J, Longacre T, Peng L, Berry G, Martin B, et al. Deep 
learning model for the prediction of microsatellite instability in colorectal 
cancer: a diagnostic study. Lancet Oncol. 2021;22(1):132–41.

	23.	 Yu T, Canales-Rodríguez EJ, Pizzolato M, Piredda GF, Hilbert T, Fischi-
Gomez E, et al. Model-informed machine learning for multi-component 
T(2) relaxometry. Med Image Anal. 2021;69: 101940.

	24.	 Liu H, Ong YS, Shen X, Cai J. When Gaussian process meets big 
data: a review of scalable GPs. IEEE Trans Neural Netw Learn Syst. 
2020;31(11):4405–23.

	25.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 
IEEE Confer Comput Vision Pattern Recogn. 2016;2016:770–8.

	26.	 Armato SG, Petrick NA, Huynh BQ, Antropova N, Giger ML. Compari-
son of breast DCE-MRI contrast time points for predicting response to 
neoadjuvant chemotherapy using deep convolutional neural network 
features with transfer learning. Society of Photo-Optical Instrumentation 
Engineers (SPIE) Conference Series. 2017;10134:101340U.

	27.	 Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, 
Forghani B. Radiomics and artificial intelligence for biomarker and 
prediction model development in oncology. Comput Struct Biotechnol J. 
2019;17:995–1008.

	28.	 De Smedt L, Lemahieu J, Palmans S, Govaere O, Tousseyn T, Van Cutsem 
E, et al. Microsatellite instable vs stable colon carcinomas: analysis of 
tumour heterogeneity, inflammation and angiogenesis. Br J Cancer. 
2015;113(3):500–9.

	29.	 Greenson JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, et al. 
Pathologic predictors of microsatellite instability in colorectal cancer. Am 
J Surg Pathol. 2009;33(1):126–33.

	30.	 Cao Y, Zhang G, Zhang J, Yang Y, Ren J, Yan X, et al. Predicting microsatel-
lite instability status in colorectal cancer based on triphasic enhanced 
computed tomography radiomics signatures: a multicenter study. Front 
Oncol. 2021;11: 687771.

	31.	 Pei Q, Yi X, Chen C, Pang P, Fu Y, Lei G, et al. Pre-treatment CT-based 
radiomics nomogram for predicting microsatellite instability status in 
colorectal cancer. Eur Radiol. 2022;32(1):714–24.

	32.	 Ying M, Pan J, Lu G, Zhou S, Fu J, Wang Q, et al. Development and valida-
tion of a radiomics-based nomogram for the preoperative prediction of 
microsatellite instability in colorectal cancer. BMC Cancer. 2022;22(1):524.

	33.	 Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: inte-
grating the consensus molecular subtypes. J Natl Compr Cancer Netw. 
2017;15(3):411–9.

	34.	 De’Angelis GL, Bottarelli L, Azzoni C, De’Angelis N, Leandro G, Di Mario 
F, et al. Microsatellite instability in colorectal cancer. Acta Biomed. 
2018;89(9-S):97–101.

	35.	 Song Y, Wang L, Ran W, Li G, Xiao Y, Wang X, et al. Effect of tumor location 
on clinicopathological and molecular markers in colorectal cancer in 
eastern china patients: an analysis of 2,356 cases. Front Genet. 2020;11:96.

	36.	 Shi B, Grimm LJ, Mazurowski MA, Baker JA, Marks JR, King LM, et al. Predic-
tion of occult invasive disease in ductal carcinoma in situ using deep 
learning features. J Am College Radiol. 2018;15(3):527–34.

	37.	 Zhou J, Zhang Y, Chang KT, Lee KE, Wang O, Li J, et al. Diagnosis of benign 
and malignant breast lesions on DCE-MRI by using radiomics and deep 
learning with consideration of peritumor tissue. J Magn Reson Imaging. 
2020;51(3):798–809.

	38.	 Chen X, He L, Li Q, Liu L, Li S, Zhang Y, et al. Non-invasive prediction of 
microsatellite instability in colorectal cancer by a genetic algorithm-
enhanced artificial neural network-based CT radiomics signature. Eur 
Radiol. 2022;33(1):11–22.

	39.	 Zhang W, Yin H, Huang Z, Zhao J, Zheng H, He D, et al. Development and 
validation of MRI-based deep learning models for prediction of microsat-
ellite instability in rectal cancer. Cancer Med. 2021;10(12):4164–73.

	40.	 Wu J, Zhang Q, Zhao Y, Liu Y, Chen A, Li X, et al. Radiomics analysis of 
iodine-based material decomposition images with dual-energy com-
puted tomography imaging for preoperatively predicting microsatellite 
instability status in colorectal cancer. Front Oncol. 2019;9:1250.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study participants
	Clinicopathological characteristics
	Identification of MMR status
	CT image acquisition
	Preliminary experiment
	MMRnet development
	Predictive performance of the MMRnet
	Ablation experiments
	Statistical analysis

	Results
	Patient characteristics
	Predictive performance of the ResNet classification model
	Subgroup analysis

	Discussion
	Conclusions
	Anchor 24
	Acknowledgements
	References


